Project 9
Validating biosensor binding kinetics for microorganism antigens

Objectives

The aim of this work is to provide comparability datasets for the binding kinetics of antigens and antigen displaying virus-like particles (VLPs), e.g., affinity, kinetics and ranking of antigens, to bespoke antibodies.

Background

The study will use de novo synthetic VLPs displaying antigens – synthetic peptides and native antigens to compare the binding response to antibodies. Antigens are derived from SARS-CoV-2 spike protein and E. coli endotoxin (LPS). The obtained datasets will support the validation of VLPs and biosensor platforms as candidate reference materials.

Standardization needs

There is a pre-standardisation need for:

- protocols and standards for antigen detection and biosensors
- assigned values consistent between laboratories
- procedures for quantitative analysis of the values by reproducible measurements

- ability to produce and characterise materials to a common biophysical specification

Relevant guidelines & standards

ISO 10993-5:2009 (biocompatibility of medical devices)
ISO17034 (reference materials production)
CHMP/GTWP/671639/2008
ISO Guide 35 Reference materials
ISO 13022:2012
CCQM BIPM
ISO 13485:2016

Relevant Committees

ISO/TC 276 - Biotechnology
ISO/TC 229 - Nanotechnology
ISO 15194:2009 - VD
ISO/TC REMCO

Work Programme

- Materials (antigens, antibodies, VLPs) are prepared and distributed
- Materials are characterised by participating laboratories
- Data is analysed with uncertainty evaluations

Second stage analysis

- Procedures developed will be repeated by a smaller group of participants to assess the test parameters using self-assembled antigen-displaying virus-like particles.

Knowledge Transfer

International round-robin tests, good practice guidelines, peer-review publications and presentations in conferences and standardisation venues.

Status

Study in progress since May 2022

Figure: (left) A schematic of a bacterium and (right) an example of a binding sensograms for SARS-CoV-2 antigens binding to immobilised antibodies performed on a Biacore T200.

Additional Volunteers Welcome

Participants fund their involvement in the project.

For more information on participation, please contact:

Project Leader
Dr James Noble
National Physical Laboratory, UK
James.noble@npl.co.uk

TWA Chair
Prof. Max Ryadnov
National Physical Laboratory, UK
max.ryadnov@npl.co.uk

www.vamas.org

July 2022