

Synthetic Biomaterials Technical Work Area 40

Project 9

Validating biosensor binding kinetics for microorganism antigens

Objectives

The aim of this work is to provide comparability datasets for the binding kinetics of antigens and antigen displaying virus-like particles (VLPs), e.g., affinity, kinetics and ranking of antigens, to bespoke antibodies.

Background

The study will use *de novo* synthetic VLPs displaying antigens – synthetic peptides and native antigens to compare the binding response to antibodies. Antigens are derived from SARS-CoV-2 spike protein and *E. coli* endotoxin (LPS). The obtained datasets will support the validation of VLPs and biosensor platforms as candidate reference materials.

Standardization needs

There is a pre-standardisation need for:

- protocols and standards for antigen detection and biosensors
- assigned values consistent between laboratories
- procedures for quantitative analysis of the values by reproducible measurements
- performance validation of reference materials in biologically native and near-native environments.

 ability to produce and characterise materials to a common biophysical specification

Relevant guidelines & standards

ISO 10993-5:2009 (biocompatibility of medical devices)
ISO17034 (reference materials production)
CHMP/GTWP/671639/2008
ISO Guide 35 Reference materials
ISO 13022:2012
CCQM BIPM
ISO 13485:2016

Relevant Committees

ISO/TC 276 - Biotechnology ISO/TC 229 - Nanotechnology ISO 15194:2009 - VD ISO/TC REMCO

Work Programme

- Materials (antigens, antibodies, VLPs) are prepared and distributed
- Materials are characterised by participating laboratories
- Data is analysed with uncertainty evaluations

CALL FOR PARTICIPATION

Figure: (left) A schematic of a bacterium and (right) an example of a binding sensograms for SARS-CoV-2 antigens binding to immobilised antibodies performed on a Biacore T200.

Second stage analysis

 Procedures developed will be repeated by a smaller group of participants to assess the test parameters using self-assembled antigen-displaying virus-like particles.

Knowledge Transfer

International round-robin tests, good practice guidelines, peer-review publications and presentations in conferences and standardisation venues.

Status

Study in progress since May 2022

Additional Volunteers Welcome

Participants fund their involvement in the project.

For more information on participation, please contact:

Project Leader **Dr James Noble**National Physical Laboratory, UK

<u>James.noble@npl.co.uk</u>

TWA Chair

Prof. Max Ryadnov

National Physical Laboratory, UK

max.ryadnov@npl.co.uk

www.vamas.org