Objectives
The aim of this study is to validate the thermal stability of a pharmaceutically relevant protein antibiotic in native and near native environments by chiroptical spectroscopy, e.g. Circular Dichroism (CD) spectroscopy.

Background
There is an increasing shift in industry towards protein biologics – 30% of total sales and 50% of top 100 pharma sales by 2022 – with oncology and infectious diseases accounting for the most significant activity.

Proteins undergo structural transitions in response to changes in their environments, while their activity depends on conformational stability and reversibility. These require routine monitoring to support QA in product development. Regulatory agencies emphasise the need for higher-order structural characterization using CD spectroscopy to ensure comparability of biological products for pharmaceutical development (e.g. ICH Q5E).

However, achieving reproducibility in measurements is hampered by the lack of high-order reference materials and methods to benchmark the performance of protein biologics. This is further supported by international comparability studies performed to date (e.g. CCQM P59, P59.1), which revealed the need for suitable reference materials to ensure the repeatability of CD measurement results. The proposed biologic is a protein antibiotic that folds in aqueous media into a highly stable tertiary structure exhibiting complete reversibility under thermal denaturation conditions.

Standardisation needs
The pre-standardisation needs focus on:
- far-UV CD spectra comparability between laboratories
- transition temperature evaluation upon thermal denaturation
- comparability in cooperativity and reversibility of the transition
- instrument performance validation and measurement variabilities as a function of temperature and concentration

Relevant Standards
ISO Guide 35 Reference materials
ISO 15189: 2012, BS ISO 29301: 2010
ISO 15194: 2009
EU 2017/746: IVD regulation
ICH Q5E: guidelines for comparability of biological products.

Relevant Committees
ISO/TC 276 - Biotechnology
ISO/TC 229 - Nanotechnologies
CCQM CiPM – CAWG, PAWG

Work Programme
- the antibiotic will be distributed to participants as a lyophilised powder
- protocols for sample preparation and measurements will be disseminated
- collected CD spectra will be compared with full uncertainty evaluations

Second stage analysis
- procedures developed will be repeated by a smaller group of participants to determine the effect of test parameters on the repeatability and reproducibility of the measurement results.

Knowledge Transfer
International round-robin tests, good practice guidelines, peer-review publications and presentations in conferences and standardisation venues.

For more information on participation, please contact:
Project Leader
Dr. Jascindra Ravi
National Physical Laboratory, UK
jascindra.ravi@npl.co.uk
TWA Chair
Dr. Max Ryadnov
National Physical Laboratory, UK
max.ryadnov@npl.co.uk

www.vamas.org
April 2019