



The Versailles Project on Advanced Materials and Standards supports trade in high technology products through international collaborative projects aimed at providing the technical basis for drafting codes of practice and specifications for advanced materials. The scope of the collaboration embraces all agreed aspects of enabling science and technology - databases, test methods, design standards, and materials technology - which are required as a precursor to the drafting of standards for advanced materials. VAMAS activity emphasizes collaboration on pre-standards measurement research, intercomparison of test results, and consolidation of existing views on priorities for standardization action. Through this activity, VAMAS fosters the development of internationally acceptable standards for advanced materials by the various existing standards development organizations.

• Canada • France • Germany • Italy • Japan • UK • USA • EC •



**Technical Working Area 21 Mechanical Tests for Hardmetals** 

## HARDMETAL TOUGHNESS TESTS: VAMAS INTERLABORATORY EXERCISE

B Roebuck and E G Bennett National Physical Laboratory Teddington Middlesex TW11 0LW, UK e-mail: bryan.roebuck@npl.co.uk eric.bennett@npl.co.uk



Report No. 48 ISSN 1016-2186 March 2005

#### Contents

| FOF | REWOI  | RD                                                  | 1  |
|-----|--------|-----------------------------------------------------|----|
|     |        |                                                     |    |
| 1   | SYN    | 1BOLS AND UNITS                                     | 2  |
| 2   | VAN    | AAS INTERCOMPARISON PLAN                            | 2  |
|     | 2.1    | Intercomparison Plan                                | 3  |
|     | 2.2    | Test Schedule                                       | 4  |
|     | 2.3    | Instructions for Palmqvist Crack Length Measurement | 7  |
| 3   | GEN    | VERAL BACKGROUND TO TOUGHNESS TESTS                 | 7  |
|     | 3.1    | Palmqvist toughness                                 | 8  |
|     | 3.2    | SEB fracture toughness tests                        | 12 |
|     | 3.3    | Chevron Notch Short Rod Tests                       | 15 |
| 4   | RES    | ULTS AND DISCUSSION                                 | 15 |
|     | 4.1    | SEB Fracture Toughness Test                         | 16 |
|     | 4.2    | Chevron Notch Short Rod Tests                       |    |
|     | 4.3    | Palmqvist Tests                                     | 21 |
| 5   | CON    | NCLUSIONS                                           |    |
| 6   | REF    | ERENCES                                             | 40 |
| 7   | ACF    | KNOWLEDGEMENTS                                      | 41 |
| APP | PENDIX | X A PALMQVIST TESTS                                 | 42 |
| APP | PENDIX | <b>K B TOUGHNESS TESTS FOR HARDMETALS</b>           | 47 |

#### Hardmetal Toughness Tests: VAMAS Interlaboratory Exercise

#### B Roebuck and E G Bennett NPL, UK

#### **Summary**

#### Rationale

Optimised use of hardmetals requires good data on fracture toughness. Hardmetals are low ductility materials and fracture can limit performance. Various test methods for obtaining toughness values are in current use and an improved understanding of the differences will underpin a sensible choice of technique.

#### Objective

To evaluate hardmetal toughness tests through an investigation of three different test methods (chevron notched bars, single edge precracked beams and Palmqvist tests) on nine different hardmetals.

#### **Interlaboratory Exercise**

An interlaboratory exercise was conducted to generate underpinning technical information on well characterised materials that works towards good practice for toughness tests for hardmetals. It was planned to provide a wider understanding of the benefits of short rod chevron notched tests vis a vis single edged precracked/notched beams and provide guidance on the allowable range for useful Palmqvist tests.

#### Outcome

Eight organisations were able to complete Palmqvist tests and two completed short rod chevron notch tests; but only three organisations were able to provide single edge beam data. Good statistics were obtained on the Palmqvist data that will support the dissemination of good testing practice. Single edge precracked beam data was thought to be closest to the "true" value and most of the short rod chevron notch test data compared reasonably well with these results. However, care was needed in testpiece preparation to ensure a good correlation between data from the Palmqvist tests and the single edge precracked beam results.

Following circulation of this report of the interlaboratory exercise, an ISO Technology Trends Assessment document is planned, as a first step in recommending appropriate suitable test methods that will have wider acceptance across industries that make and use hardmetals.

#### Foreword

Hardmetal<sup>\*</sup> fracture toughness values are required for a number of reasons; for example:

- for product design and performance assessment.
- for materials selection.
- for quality control.

Hardmetal products can fracture from crack-like defects that develop in service, through, for example, wear or fatigue processes. Consequently, fracture toughness is an important parameter that influences the strength of hardmetal components. Fracture toughness increases with increasing Co content and increasing WC grain size. There is no ISO international standard test method for measuring toughness specifically for hardmetals, primarily because of the difficulty of introducing stable precracks into these tough but hard materials. There is a particular need for a suitable test for materials with toughness values greater than about 15 MN m<sup>-3/2</sup>, that are even more difficult to precrack (a prerequisite for a valid toughness test). The ASTM have developed tests based on the "chevron notch short rod" method, ASTM E1304 and ASTM B771, and this is one of the test methods being assessed in the current VAMAS exercise.

Different groups and organisations in the hardmetal community have evaluated a range of techniques [1-17] including:

- SEPB Single Edge Precracked Beam. Beam with sharp crack on tensile surface. Hardmetals are difficult to precrack. Wedge indentation and fatigue (including in compression from a notch) have proved successful in some cases. A new method based on the use of stiff loading system has been used in the current exercise.
- SENB Single Edge Notched Beam. Beam with notch. Results depend on notch width and method of preparation. Not generally recommended for hardmetals.
- SEVNB Single Edge V-notched Beam. Beam containing notch with sharpened tip diamond honed. Validated on ceramics. More work needed on hardmetals to confirm requisite notch sharpness.
- SCF Surface Crack-in Flexure. Beam containing small semicircular flaw introduced by indentation and damage removed. It is not possible to remove damage in hardmetals and leave a useful precrack. Not recommended.
- IF Indentation Fracture. Palmqvist toughness test crack lengths at indentation corners. Works reasonably well for hardmetals in toughness range 8-16 MNm<sup>-3/2</sup> provided that the surface is free from residual stresses. Tougher materials produce few or inconsistently sized cracks. Being evaluated in current VAMAS interlaboratory comparisons.

<sup>\*</sup> Terminology - There is a range of terms used for this type of material, including especially cemented carbides and/or cermets as well as hardmetals. The word 'hardmetals' has been used in this document. It includes all hard materials based on carbides that are bonded with a metal. In ISO 3252 Terminology 'hardmetal' is stated to be "a sintered material characterised by high strength and wear resistance, comprising carbides of refractory metals as the main component together with a metallic binder phase". 'Cemented carbide' in synonymous with 'hardmetal'. A 'cermet' is defined as "a sintered material containing at least one metallic phase and at least one non-metallic phase generally of a ceramic nature".

- IS Indentation Strength. Rectangular beam with indentation; subsequently fractured. Damage and residual stresses associated with indentation have strong influence on result. Not recommended for hardmetals.
- CNB Chevron Notched Beam. Crack initiation difficult in hardmetals. Not recommended.
- CNSR Chevron Notched Short Rod. Commercial equipment available Terratek/Dijon. Need to be careful with residual stresses. ASTM standards in place (E1304 and B771). Included in current VAMAS interlaboratory comparison.

#### **1** Symbols and units

| Symbol          | Designation                            | Units                |
|-----------------|----------------------------------------|----------------------|
| K <sub>Ic</sub> | Plane strain fracture toughness        | MN m <sup>-3/2</sup> |
| $W_{G}$         | Palmqvist toughness                    | $N \text{ mm}^{-1}$  |
| $W_{K}$         | Palmqvist fracture toughness           | MN $m^{-3/2}$        |
| HV P            | Vickers hardness at load P (kgf)       | kgf mm <sup>-2</sup> |
| Р               | Indentation load                       | N (kgf)              |
| Т               | Total crack length                     | mm                   |
| d               | Indentation diagonal mean value        | mm                   |
| $d_{1}, d_{2}$  | Indentation diagonal individual values | mm                   |

For the purpose of this report the following nomenclature applies:

#### 2 VAMAS Intercomparison Plan

Initially fifteen organisations showed an interest in participation and materials supply:

| National Physical Laboratory  | UK      | Sandvik Hard Materials | UK            |
|-------------------------------|---------|------------------------|---------------|
| Dymet Alloys                  | UK      | Marshalls              | UK            |
| Teledyne Advanced Materials   | USA     | Kennametal             | USA           |
| Plansee Tizit                 | Austria | $BAM^+$                | Germany       |
| Harditalia                    | Italy   | Baildonit              | Poland        |
| Boart Longyear                | Germany | United Hardmetals      | Germany       |
| Hughes Christensen            | USA     | Hilti                  | Liechtenstein |
| University of Catalunya (UPC) | Spain   |                        |               |

Some organisations have changed their names since the start of the exercise. The original names have been kept for this report.

<sup>+</sup> BAM – Bundesanstalt für Materialforschung und-prufung.

Not every organisation that originally agreed to take part were able to complete their measurements by the date of this current report.

Additional/Dissemination Groups:

British Hardmetal Association Research Group USA Cemented Carbides Association Japan Cemented Carbides Association

#### 2.1 INTERCOMPARISON PLAN

A subset of the participating organisations supplied materials for tests in the form of rectangular bars or rods, dependent on test method to be evaluated. Further subsets of these were used for Palmqvist tests.

NPL coordinated materials supply and preparation of Palmqvist testpieces. Participating organisations were sent two sets of samples for Palmqvist tests, one already indented and one with as-ground surfaces. Participants polished, indented and measured crack length by their own procedures on this second set as well as measuring the first set. Participants were not asked to measure hardness because NPL values were to be used in the analysis. However, some organisations did measure hardness and these are reported where appropriate. Table 1 gives the material supply and testing matrix for each organisation. Table 2 gives the material types that were originally offered. In practice, four organisations provided nine hardmetals, including one (Ti(C,N) based. Table 3 gives some properties of these nine hardmetals (Data supplied by Hughes Christensen and NPL). In-house tests were performed by appropriate organisations on suitable sets of material.

| Organisation            | Offer of Material Supply | Palmqvist Tests   | In-house Tests |
|-------------------------|--------------------------|-------------------|----------------|
| 6                       | Y/N                      | Y/N               | Y/N            |
| NPL                     | N                        | $Y^+$             | $Y^{++}$       |
| BAM                     | N                        | $Y^+$             | $Y^+$          |
| Dymet*                  | Y(3)                     | $\mathbf{Y}^{++}$ | Ν              |
| Sandvik Hard Materials* | Y(2)                     | $\mathbf{Y}^{++}$ | $Y^{++}$       |
| Kennametal              | Y(3) ✓                   | $\mathbf{Y}^{++}$ | $Y^{++}$       |
| Baildonit               | Y(2) ✓                   | $\mathbf{Y}^+$    | Ν              |
| United Hardmetals*      | Y(2)                     | $\mathbf{Y}^{++}$ | $Y^{++}$       |
| Hilti                   | N                        | $\mathbf{Y}^{++}$ | Ν              |
| Harditalia              | Y(3) 🗸                   | $Y^+$             | Ν              |
| Boart Longyear*         | Y(2)                     | $Y^+$             | $Y^{++}$       |
| Teledyne*               | Y(2)                     | $Y^+$             | $Y^+$          |
| Plansee                 | Y(2) ✓                   | $Y^+$             | $Y^+$          |
| Marshalls               | N                        | $Y^{++}$          | $Y^{++}$       |
| Hughes Christensen      | N                        | $Y^+$             | $Y^+$          |

 Table 1
 Initial Materials Supply and Testing Matrix

\* Materials not supplied in time for exercise. \*\* Tests not completed. <sup>+</sup> Tests successfully completed.

✓ Supplied materials

| Organisation   | Code | Material                                               | Organisation | Code | Materials                                              |
|----------------|------|--------------------------------------------------------|--------------|------|--------------------------------------------------------|
| Sandvik HM     | HM1  | Ultrafine                                              | Baildonit*   | B1   | 6% Co, submicrometre                                   |
|                | HM2  | Fine/alternative binder                                |              | B2   | 10% Co, submicrometre                                  |
| Teledyne       | T1   | Medium, low cubic, 10-11%Co                            | Harditalia*  | H1   | Low Co                                                 |
|                | T2   | As above + Ruthenium                                   |              | H2   | Med Co                                                 |
|                |      |                                                        |              | H3   | High Co                                                |
| Plansee*       | P1   | Submicrometre hardmetal                                | Kennametal*  | K1   | 6% Co, small gs, low cubics                            |
|                | P2   | Cermet (Palmqvist only)                                |              | K2   | 8 <sup>1</sup> / <sub>2</sub> %Co, med gs, high cubics |
|                |      |                                                        |              | K3   | 9 <sup>1</sup> / <sub>2</sub> %Co, large gs, no cubics |
| Dymet          | D1   | 5% Co; fine/medium; 9% cubics                          | United       | U1   | 10% Co, 0.8 μm gs                                      |
|                | D2   | 7 <sup>1</sup> / <sub>2</sub> % Co; medium; 20% cubics | Hardmetals   | U2   | 3 <sup>1</sup> / <sub>2</sub> % Co, 0.8 μm gs          |
|                | D3   | 6% Co; fine/medium                                     |              |      | · · · · ·                                              |
| Boart Longyear | BL1  | 7 <sup>1</sup> / <sub>2</sub> % Co; medium; 20% cubics |              |      |                                                        |
|                | BL2  | High/medium Co; coarse WC                              |              |      |                                                        |

 Table 2
 Material Types – Original Offer

\* Materials used in interlaboratory exercise.

| Table 3  | Material Pro | nerties – Hughes | Christensen an  | d NPL | Measurements     |
|----------|--------------|------------------|-----------------|-------|------------------|
| I abic 5 | Matchai 110  | per des – mugnes | Chi istensen an |       | wicasui cincints |

| Material   | Density<br>Mg m <sup>-3</sup> | Coercivity<br>kA m <sup>-1</sup> | Magnetic moment<br>$\mu T m^3 kg^{-1}$ | HRA  | HV30 <sup>+</sup> |
|------------|-------------------------------|----------------------------------|----------------------------------------|------|-------------------|
| B1         | -                             | -                                | -                                      | -    | 1778              |
| B2         | -                             | -                                | -                                      | -    | 1626              |
| H1         | 14.77                         | 31.0                             | 0.86                                   | 93.3 | 1810              |
| H2         | 14.50                         | 19.9                             | 1.45                                   | 92.0 | 1592              |
| H3         | 14.19                         | 14.5                             | 2.02                                   | 89.9 | 1364              |
| TCM10 (P2) | 6.6 <sup>††</sup>             | -                                | -                                      | -    | 1636              |
| K313 (K1)  | 14.81                         | 23.8                             | 0.94                                   | 92.7 | 1726              |
| K420 (K2)  | 12.38                         | 11.1                             | 1.31                                   | 91.4 | 1486              |
| K3560 (K3) | 14.38                         | 4.9                              | 1.44                                   | 85.9 | 1028              |

<sup>+</sup> NPL values <sup>††</sup> Source values

#### 2.2 TEST SCHEDULE

All materials were tested for Palmqvist toughness, but only subsets were tested by in-house methods. Only a limited number of organisations were able to complete tests by methods other than Palmqvist.

The test schedule required some organisations to prepare materials for collaborating companies to test. The dimensional requirements for appropriate in-house tests are given in Table 4.

| Organisation       | Test**                          | Dimensions, mm*                    |
|--------------------|---------------------------------|------------------------------------|
| NPL                | SEB                             | $2 \times 5 \times 35$ (min)       |
| BAM                | SEB                             | $3 \times 4 \times 45$             |
| Boart Longyear     | Terratek short rod              | nominal $10 \phi \times 15 \log$   |
| United Hardmetal   | SEB                             | $6 \times 10 \times 20$            |
| Teledyne           | Terratek short rod <sup>+</sup> | nominal 12.7 $\phi \times 19$ long |
| Kennametal         | SEB                             | $3 \times 6 \times 45$             |
| Sandvik HM         | SEB                             | $2 \times 5 \times 35$             |
| Marshalls          | Terratek short rod              | nominal 12.7 $\phi \times 19$ long |
| Hughes Christensen | Terratek short rod <sup>+</sup> | nominal $12 \times 12 \times 18$   |
| Plansee            | $SEB^+$                         | nominal $40 \times 5 \times 2$     |

#### Table 4 In-house Testpiece Requirements

\* 3 testpieces/material grade

\*\* SEB - Single edge beam, notched or precracked

<sup>+</sup> Organisations able to complete test.

Materials for Palmqvist tests were taken from the materials supplied for in-house tests.

In practice only two organisations were able to perform chevron notch short rod tests and three organisations completed SEB tests (Table 5). Other organisations attempted in-house tests but were unable to complete them because of problems with the test method, facility availability or testpiece dimensions being slightly out of specification.

|                                     |             | TE        | STPIECE GEOMET | RY        |
|-------------------------------------|-------------|-----------|----------------|-----------|
| TESTING OKGANISATIO                 | JN          | SEB       | SR1            | SR2       |
| NPL <sup>+</sup>                    | SEPB        | B(2)      |                |           |
|                                     | 2×5×35 mm   | K(3)      |                |           |
|                                     |             | H(3)      |                |           |
| BAM                                 | SEVNB       | B(2)      |                |           |
|                                     | 3×4×35 mm*  | K(3)      |                |           |
|                                     | 2×5×40 mm** | H(3)      |                |           |
| Boart Longyear <sup>+</sup>         | SR2         |           |                | H(3) B(2) |
|                                     | 10ф×15 mm   |           |                | K(3) P(1) |
| United Hardmetals <sup>+</sup>      | SEPB        | B(2)      |                |           |
|                                     | 6×10×20 mm  | K(3)      |                |           |
|                                     |             | H(3)      |                |           |
| Teledyne                            | SR1         |           | H(3) B(2)      |           |
|                                     | 12.7φ×19 mm |           | K(3)           |           |
| Kennametal <sup>+</sup>             | SEPB        | B(2)      |                |           |
|                                     | 3×6×45 mm   | K(3)      |                |           |
|                                     |             | H(3)      |                |           |
| Sandvik Hard Materials <sup>+</sup> | SEPB        | B(2)      |                |           |
| (CERMeP)                            | 2×5×35 mm   | K(3)      |                |           |
|                                     |             | H(3)      |                |           |
| Marshalls <sup>+</sup>              | SR1         |           | H(3) B(2)      |           |
|                                     | 12.7ф×19 mm |           | K(3)           |           |
| Hughes Christensen                  | SR1         |           | H(3) B(2)      |           |
|                                     | 12.7ф×19 mm |           | K(3)           |           |
| University of Catalunya             | SEPB        | B(2)      |                |           |
|                                     | 2×5×40 mm   | K(3)      |                |           |
|                                     |             | H(3)      |                |           |
| Plansee                             | SEPB        | B(2) K(3) |                |           |
|                                     | 2×5×40 mm   | H(3)      |                |           |

#### Table 5 Test Outline (Excluding Palmqvist tests)

<sup>+</sup> Unable to complete tests

\* Preferred

\*\* Supplied

Testpiece design

| SEPB -  | Single Edge Precracked Beam            |
|---------|----------------------------------------|
| SEVNB - | Single Edge V-notched Beam             |
| SR1 -   | Short Rod, 12.7 mm $\phi \times 19$ mm |
| CD C    | 01 (D 1 10 ) 15                        |

SR2 - Short Rod, 10 mm  $\phi \times 15$  mm

Number in brackets – number of hardmetals. 5 off each material to be supplied.

Material Supply

- B Baildonit
- P Plansee
- K Kennametal
- H Harditalia

#### 2.3 INSTRUCTIONS FOR PALMQVIST CRACK LENGTH MEASUREMENT

Each pack for participants contained nine polished sections, one from each grade of material together with a reporting table. In the central region of each sample was a HV30 Vickers indent. The sample of grade K3560 had an additional HV100 indent made, which is situated between the HV30 indent and one of the corners of the sample.

- Step 1 For all samples except grade K3560, measure the total length of the cracks produced at the corners of the HV30 indent. For sample of grade K3560, measure the total length of the cracks produced at the corners of the HV100 indent. Enter the measured values in a table provided.
- Step 2 For all samples except grade K3560; place 3 HV30 indents into the polished face of the specimen. Ensure that these are sufficiently spaced so that cracks produced do not overlap. Measure the total length of the cracks produced for each of the indents and enter the values into the table. The following stage is optional for those who can use 100 kgf for Vickers indentation. For grade K3560, place 3 HV100 indents into the polished face of the specimen. Measure the total length of the cracks produced for each of the indents and enter the values into the table.
- Step 3 Polish the opposite face of each of the specimens. Please provide details of the polishing routine and any other preparation technique that is used.
- Step 4 For all samples except grade K3560; place 3 HV30 indents into the face of the specimen polished by your in-house routine. Please ensure that these are sufficiently spaced so that cracks produced do not overlap. Measure the total length of the cracks produced for each of the indents and enter the values into the table. The following stage is optional for those who can use 100 kgf for Vickers indentation. For grade K3560, place 3 HV100 indents into the polished face of the specimen. Measure the total length of the cracks produced for each of the indents and enter the values into the table.
- Step 5 Please provide details as to how the crack lengths were measured.

NB Any other comments/observations you care to make would be appreciated and can be annotated below the table.

Further information on the Palmqvist test method is given in Appendix A.

#### **3** General background to toughness tests

The results of fracture toughness test methods can be expressed either as a stress intensity factor,  $K_{Ic}$ , MN m<sup>-3/2</sup> or as a fracture surface energy, J m<sup>-2</sup>. The range of  $K_{Ic}$  values for typical WC/Co hardmetals is from 7 to 25 MN m<sup>-3/2</sup>. For hardmetals there is a general inverse trend of hardness against fracture toughness.

When applied unqualified to hardmetals 'toughness' can have several meanings:

- a) Plane strain fracture toughness,  $K_{Ic}$  (MN m<sup>-3/2</sup>) a value obtained from tests on specimens with appropriate geometries for plane strain conditions and containing a well defined geometry of crack. There is no ISO standard method for hardmetals. Different organisations use different test methods for introducing the precrack. However, the ASTM have developed a "chevron notch short rod" test (ASTM E1304 and B771).
- b) Strain energy release rate (or work of fracture), G an alternative expression for toughness, often obtained by converting plane strain toughness, K, to G (i.e.  $G = K^2/E(1-v^2)$ , E is Young's modulus and v is Poisson's ratio). It has units of J m<sup>-2</sup>. Again there is no standard method.
- c) Palmqvist toughness, W a value obtained by measuring the total length of cracks emanating from the four corners of a Vickers hardness indentation. For a given indentation load the shorter the crack the tougher the hardmetal. There is no standard for the test and the results are very sensitive to methods of surface preparation.
- d) Finally, toughness is also widely used, in a loose sense, to describe the empirical relation between perceived resistance to dynamic impacts. This is neither standardised nor quantified, but is clearly important for many industrial applications of hard materials. Also, principally for hardmetals, it may be more realistically assessed through either fatigue tests or high-rate strength tests, rather than a conventional fracture toughness test.

#### 3.1 PALMQVIST TOUGHNESS

Palmqvist tests are widely used to assess the toughness of hardmetals since only small amounts of material are used and the difficulties of precracking conventional toughness testpieces are bypassed [18,19]. However, the method has yet to be standardised and until it has there will always be some doubt in comparing data published from different sources. The method is particularly sensitive to the testpiece preparation procedure [5,6]. There is a considerable body of published information on Palmqvist toughness tests for hardmetals [1-17], and a good practice guide has been written by NPL [20]. The residual stresses, which affect crack lengths in the Palmqvist test, are likely to be more significant in the fine grained hardmetals. Currently an annealing treatment of 800 °C for 1h is generally used for Palmqvist tests following the method outlined by Exner [5]. This procedure should be re-examined, however, for very fine grained hardmetals. Testpieces may need to be annealed at higher temperatures to ensure complete removal of residual stresses. However, for newer grades of hardmetal, especially with very fine structures or alternative binder phase alloys, the use of higher annealing temperatures could produce changes in structure [21,22]. A good review of the effects of residual stresses was provided by Yohe [23]; this reference also addressed the issue of residual stresses in Short Rod toughness tests and concluded that the effects were significant and required careful consideration.

Palmqvist toughness, W, is a toughness value obtained by measuring the crack lengths at the corners of a Vickers indentation. It can be evaluated by making indentations either at a single load, usually 30 kgf, or from the inverse of the slope of a plot of crack length against load for a range of applied loads. There is no standard method for measuring the crack lengths, either of the methods shown in Figure 1 can be used. For hardmetals, the crack depth profile is normally of the Palmqvist type, i.e. independent shallow arcs emanating from each indentation corner.

Measurement of surface crack length is, however, open to operator error. It is widely recognised that test surfaces should be carefully prepared to remove the effects of residual surface stresses [5]. The test also has an uncertain fracture mechanics pedigree because of uncertainties associated with residual stresses introduced by the indentation.



Figure 1 Schematic diagram and definitions for Palmqvist Test Method.

Hardness:

H = 1.8544 P /  $((d_1 + d_2)/2)^2$ 

Indentation Force : P ; usually 30 kgf

Alternative methods measuring crack length and toughness, W:

- a) Measure crack tip to crack tip,  $t_1 = (\ell_1 + \ell_2 + d_1)$ ,  $t_2 = (\ell_3 + \ell_4 + d_2)$ Measure indentation diagonals,  $d_1$ ,  $d_2$  $W_G = P/[(t_1 - d_1) + (t_2 - d_2)]$
- b) Measure crack lengths  $\ell_1$  to  $\ell_4$  from crack tip to indentation corner Total crack length,  $T = \ell_1 + \ell_2 + \ell_3 + \ell_4$  or  $(t_1 - d_1) + (t_2 - d_2)$  $W_G = P/(\ell_1 + \ell_2 + \ell_3 + \ell_4).$

Note: Parameters c and a are widely used in the literature for calculating indentation toughness values for ceramic materials.

There are two methods for calculating the toughness value:

#### Method 1 - Ratio of indent load to crack length

 $W_G$  is calculated from the ratio of indent load, P, to total crack length, T (either by using the inverse of the slope of a plot of crack length against load or using the crack length from the indentation at a single load), where T is measured by one of the methods shown in Figure 1.

$$W_G = \frac{P}{T}$$
(1)

 $W_G$  is expressed in units of N mm<sup>-1</sup>, which is equivalent to J m<sup>-2</sup> (i.e. strain energy release rate).

#### Method 2 - Calculated value of toughness

 $W_K$  is obtained from  $W_G$  using the following formula [1-3]:

$$W_{\rm K} = A \sqrt{\rm H} \sqrt{W_{\rm G}} \tag{2}$$

where A is an empirical constant with a value of 0.0028, H is the hardness in N mm<sup>-2</sup> and  $W_K$  is expressed in MN m<sup>-3/2</sup>. Following the analysis discussed by Warren and Matzke [1], Shetty *et al.* [2] and Spiegler *et al.* [3], where A is a constant of value 0.0028, HV is the hardness (in N mm<sup>-2</sup>) at a load of 30 kgf and  $W_G$  is already defined in expression (1).

In principle the crack length can be measured in one of two ways:

- 1. from indent corner to crack tip (for each corner and then summing the value)
- 2. from crack tip to crack tip minus the indent diagonal (and summing orthogonal values).

At NPL method 1 is used.

Research at NPL [24] has shown that the uncertainties associated with the Palmqvist test are generally about  $\pm$  1.5 MN m<sup>-3/2</sup> for calculations of toughness from the formula,  $W_K = A\sqrt{HV} \sqrt{W_G}$ . These values of uncertainty can be compared with an estimated uncertainty of about  $\pm$  0.5 MN m<sup>-3/2</sup> for plane strain toughness tests on more conventional fracture toughness testpieces [25].

In summary, toughness data quoted for very fine grained hardmetals must be considered very carefully since there are no standard methods. Differences of less than 50 N mm<sup>-1</sup> (W<sub>G</sub>), 1.5 MN m<sup>-3/2</sup> (W<sub>K</sub>) or 0.5 MN m<sup>-3/2</sup> (K<sub>Ic</sub>) are not likely to be significant.

For conventional hardmetals a good correlation is claimed between  $K_{Ic}$  and  $W_K$  [2]. This remains to be confirmed by validated tests according to an agreed standard method. Research work at NPL compared Palmqvist toughness measurements on a range of WC/6% Co hardmetals with plane strain  $K_{Ic}$  values obtained by an NPL recommended procedure using the wedge indentation method [4]. The agreement was quite good between  $K_{Ic}$  values of about 10

and 15 MN m<sup>-3/2</sup>. For low values the Palmqvist method overestimated the toughness, possibly because:

- i) the true lengths of cracks in hard fine-grained hardmetals (i.e. low toughness) are difficult to measure accurately and the length is underestimated giving a higher apparent toughness
- or ii) the annealing treatment of 800 °C for 1 h is not adequate to fully relieve residual stresses

In some published work temperatures of 850 °C for 2 h have been used. Clearly further systematic work on temperatures and times of annealing, especially for the finer-grained harder materials would seem to be required.

or iii) expression (2) is not applicable in the case of long cracks where the crack shape may be approaching that of a half-penny, as in many low toughness ceramic materials. Other expressions for calculating  $W_K$  may be more appropriate [20].

For all values the Palmqvist data show more scatter than the plane strain data and this is especially large for high toughness hardmetals, (Fig 2). In fact, at high toughness values it becomes very difficult to obtain cracks at the corners of an indentation even when the applied loads are as high as 60-100 kgf. It is impractical to use loads higher than 30 kgf on a regular basis because of the cost of damage to the diamond indenter. Although there is scope perhaps, for using indenters manufactured from polycrystalline diamond (PCD).

One advantage of the Palmqvist method is that parallel measurements are made of sample hardness, which is required for quality control purposes. The crack length, and thus toughness measurements, do not therefore require much more additional effort and can yield equally useful material characterisation data provided the measurements are obtained carefully.



Figure 2 Palmqvist toughness values across a range of hardness values for WC/Co hardmetals (unpublished work – NPL).

#### 3.2 SEB FRACTURE TOUGHNESS TESTS

Tests in which beams or rods, notched or precracked, are fractured in bending, are preferred by the conventional fracture mechanics community, since these arrangements allow better control over loading and stress state at the crack tip, ensuring that 'valid'  $K_{Ic}$  values are obtained. The ability to obtain load-displacement data from these tests also permits subcritical crack growth and other factors that may compromise the value obtained to be better accounted for. While both specimen preparation and the tests themselves are expensive, the toughness values obtained are valuable as benchmarks against which to compare other methods more suitable for routine use in industry.

A variety of methods have been developed for fracture toughness tests using a rectangular beam (SEB) testpiece. The key objective is to develop a stress-free crack of known geometry that can be loaded to fracture and the fracture load is then used, together with the known crack length, to calculate fracture toughness. For precracked SEB (single edge beam) testpieces the value of  $K_{Ic}$  is related to the nominal applied bending moment, M, and crack length, a, by:

$$K_{Ic} = \frac{6M}{BW^2} \sqrt{\pi a} f(a/W)$$
(3)

where, a is the crack length, B and W are the testpiece width and height respectively and f(a/W) is fourth order polynomial. Tabulated values for f(a/W) appear in reference books for specimens of standard dimensions.

Fracture toughness results can be calculated using the compliance derived f(a/W) and the Brown and Srawley 3 pt bending formula for L/W = 4 where:

$$f(a/W) = 1.09 - 1.73 (a/W) + 8.2 (a/W)^{2} - 14.2 (a/W)^{3} + 14.6 (a/W)^{4}$$
(4)

The crack lengths are generally measured on the fracture face after testing to failure.

For precracked single edge cracked beam (SEPB) specimens, the value of  $K_{Ic}$  is thus related to the nominal applied bending load, P, and crack length, a, by

$$K_{Ic} = \frac{PS}{BW^{1.5}} f(a/W)$$
(5)

where B and W are the testpiece width and height, respectively, and f(a/W) is a polynomial, S is the total span in a 3 pt bend test and the distance between the inner and outer rollers in a 4 pt bend test.

A variety of approaches to develop stress-free cracks in SEB tests have been published, or are in the process of development, including:

- Wedge indentation (developed at NPL)
- Diamond notching (developed for ceramics, adopted by BAM in current interlab exercise)
- Chevron notch beam
- Stiff precracking machine, to grow a crack from a chevron notch (adopted by Plansee in current interlab exercise)
- Precracking of notch in compression fatigue; followed by extension fatigue of crack to known geometry in tension (adopted by UPC in current interlab exercise).

For the NPL wedge indentation method the cracks can easily be seen if they are stained by the coolant fluid used when grinding away the plastic indentation after precracking with the wedge indenter. Previous work has shown that this stain had no effect on the measured value of  $K_{Ic}$  [25]. Five testpieces of each batch are usually precracked using the wedge indentation method at NPL, which has been shown to produce stress free cracks of controlled length. NPL were unable to use this method in the current exercise, due to problems with the availability of appropriate test equipment.

Plansee have developed a new in-house stiff precracking machine that uses a piezoactuator to drive controlled crack growth in a SEB testpiece which has a narrow starter notch. This machine allowed stable crack growth to a depth of about W/2. There was some concern over crack front curvature – differences in crack length measured at the surface and at the centre of the testpiece gave  $K_{Ic}$  values that differed by about 1-2%. Expression (4) – the Srawley function – was used for calculating  $K_{Ic}$  values from the mean crack length (measured at 5 equidistant points across the testpiece width B) and fracture load. Further work is being conducted at Plansee to investigate the effects of surface preparation (grinding/lapping/polishing) on the extent of crack curvature and its effect on calculated values of  $K_{Ic}$ .

UPC used the compression fatigue method to introduce stress free cracks with a simple geometry. A notch of 2.4 mm in depth was machined in the middle of  $3 \times 6 \times 45$  mm bars using a diamond disc of 0.3 mm thickness. The root of the notch was shaped by a razor blade with diamond paste until the final notch had a depth of 2.6-3.0 mm and a notch radius of about

15-45  $\mu$ m. A sharp crack was then nucleated at the root of the notch by compressive fatigue cycling in four-point bending. In doing so, a sinusoidal wave with a frequency of 10 Hz and maximum compressive peak stress of 565-1975 MPa (and load ratio of 10) was applied. However, the induced cracks were extremely small (less than 100  $\mu$ m). Thus, they were further extended under far-field cyclic tensile loads (at R = 0.1) until final lengths were about 0.5 mm. Finally, fracture toughness values were determined by testing the precracked samples to failure under constant loading rate, between 200 and 400 N/s, and using the stress intensity factor given by Tada, Paris and Irvine [26]. Two specimens were employed for each hardmetal grade. Crack length was measured at 5 equidistant points along the crack front and a mean value taken. Some interesting features regarding compressive fatigue precracking in bending, as compared to compressive fatigue precracking in axial loading, are: less restriction regarding specimen dimensions and testing set-out; the requirement for lower applied nominal loads; insignificant residual stresses (further research is in progress). A relative shortcoming is the fact that "sharper" notches are requested in order to avoid potential fatigue failure from "natural" flaws in the "unnotched" – but subjected to tensile load-side.

BAM, for this exercise, chose to use the diamond notch method developed for ceramics. In each case five testpieces and two dummy specimens were mounted on a holder. The dummies are used to protect the specimens during sawing and polishing the notch. Each holder was mounted on a diamond saw. A starter notch (depth 1.3 mm) was sawn into all specimens. After this the holder was fixed in a vice and the starter notch was filled with diamond paste (at first 6  $\mu$ m, by the end 1  $\mu$ m) and oil. A razor blade was put into the starter notch and a light force was applied. The V-notch was controlled periodically with an optical microscope. At the end of this process the specimens were removed from the holder and cleaned with acetone in a small powerful ultrasonic bath. All specimens were checked optically. The V-notch tip was photographed with a magnification of ×300 and the V-notch radius was measured.

An Instron testing machine capable of keeping a uniform crosshead speed was used to fracture the notched testpieces. This machine was capable of measuring the true load at rupture to better than  $\pm$  1%. A 4-point flexure loading fixture (inner span 20 mm, outer span 40 mm) was used, fulfilling the requirements of EN 843-1: Determination of flexural strength. The specimens were placed with the V-notch down on the outer rollers and were loaded with a crosshead speed of 0.5 mm/min. The fracture load was recorded. The fracture tests were performed in air at room temperature. After the fracture test the depth of the V-notch was measured by observing the fracture surface using a calibrated microscope with a magnification ×50 on three evenly distributed points.

The fracture toughness was calculated using the following expression, with  $S = (S_1 - S_2)$ , where  $S_1$  and  $S_2$  are the outer and inner span lengths respectively.

$$f(a/W) = \frac{3(\alpha)^{0.5}}{(1-\alpha)^{1.5}} \left( 1.9887 - 1.326\alpha - \left(\frac{\alpha(1-\alpha)(3.49 - 0.68\alpha + 1.35\alpha^2)}{(1+\alpha)^2}\right) \right)$$
(6)

#### **3.3** CHEVRON NOTCH SHORT ROD TESTS

ASTM standard test method E1304, "Standard Test Method for Plane Strain (Chevron-Notch) Fracture Toughness of Metallic Materials", significantly simplifies measurement of plane strain fracture toughness. E1304 allows five different specimen geometries. These include specimens of round (rod), square, and rectangular (bar) cross section with a length to diameter ratio (W/B) of 1.45 or 2.00. A groove is machined in one end of the short rod or short bar specimen parallel to the plane of the precrack, to provide a loading surface where the grips in the test machine can apply a load to the two specimen halves. Thus, fatigue pre-cracking is not required, with substantially lower testing costs. An important part of the specimen preparation procedure is the machining of the chevron slots in the specimen blank. These narrow slots (typically 0.2 mm) can be machined with a diamond slitting saw. When the loading grips are moved apart, an opening load is applied to the two specimen halves. Transducers in the test system monitor the magnitude of the opening load as well as the specimen mouth opening displacement. The test record plots mouth opening displacement vs mouth opening load. As opening load is increased, specimen mouth opening displacement increases as the test specimen is deformed elasticly, until the load reaches a point at which a natural crack is initiated at the tip of the triangular ligament (chevron) that joins the two specimen halves. As the load increases further, the crack length increases. The triangular shape of the fracture surface area dictates that as the crack length increases, the width of the crack front also increases. This widening of the crack front requires more energy to grow the crack, resulting in a stable, steady-state, natural crack. At a crack length known as the "critical crack length" (a<sub>c</sub>), the load required to advance the crack passes through a maximum, and less load is then required to advance the crack. This critical crack length is geometry dependent and therefore a known length for the test specimen. In the simplest form of the test, one can simply measure the maximum load, and, knowing the critical crack length, then calculate plane strain fracture toughness for that test specimen.

A valid plane strain fracture toughness test requires a minimum specimen size to assure that the crack front is subject primarily to plane strain conditions. The minimum valid size for a short rod test specimen is one where the minimum "B" dimension is half the minimum "B" dimension for a compact tension (E399) test specimen of the same material. This minimum short rod test specimen is only 3% of the volume of the equivalent compact tension test specimen. Not only does this smaller size reduce significantly the amount of material required to perform a test, but it allows fracture toughness tests on materials where limited section thickness is available for a test specimen. In addition, the small size allows local measurement of fracture toughness.

Two organisations, Hughes Christensen and Teledyne, were able to perform short rod tests for this VAMAS exercise.

#### 4 Results and Discussion

A full set of all the results provided by participants is given in Appendix B, including:

- SEB data returned by three participants (Plansee, BAM and UPC).
- Chevron Notch Short Rod data returned by two participants (Hughes and Teledyne).
- Palmqvist data obtained at NPL on all samples provided to participants.
- Palmqvist data returned by participants.

#### 4.1 SEB FRACTURE TOUGHNESS TEST

Three sets of results were obtained from single edge beam tests:

- Plansee use of stiff precracking machine.
- BAM use of diamond notching technique developed for ceramics.
- UPC crack initiation by fatigue of notched samples in compression. Some difficulties due to small size of testpieces.

Other organisations attempted this method, but were unable to provide data.

- NPL wedge precracking; equipment not available at the time of the exercise.
- CERMeP Lack of confidence with notching method.

The results from the use of the Plansee stiff precracking machine are given in Table 6 (mean of 3-4 tests; complete details are given in APPENDIX B) and this data is plotted against hardness in Fig 3. This data set was considered to be the reference data set with which to compare the alternative precracking techniques.

| Sample | K <sub>Ic</sub> *<br>MN m <sup>-1.5</sup> | HV30<br>NPL value | Sample | K <sub>Ic</sub> *<br>MN m <sup>-1.5</sup> | HV30<br>NPL value |
|--------|-------------------------------------------|-------------------|--------|-------------------------------------------|-------------------|
| B1     | 9.1                                       | 1778              | Н3     | 12.1                                      | 1364              |
| B2     | 8.9                                       | 1626              | K313   | 9.4                                       | 1726              |
| H1     | 8.6                                       | 1810              | K420   | 11.4                                      | 1486              |
| H2     | 9.7                                       | 1592              | K3560  | 18.7                                      | 996               |

Table 6Plansee SEPB results

\* Mean of 4 tests; standard deviation is about 0.05-0.15 MN m<sup>-3/2</sup> for all hardness values (about 1% of mean value).

The Ti(C,N) cermet sample (TCM10) was not tested.

The UPC results from the compression fatigue initiation method are given in Table 7 and Fig 4. The results are in good agreement with those reported by PLANSEE; thus, both sets seem to be suitable as reference values for comparison of other techniques.

| Fable 7 | UPC SEPB resul | ts |
|---------|----------------|----|
|---------|----------------|----|

| Sample | K <sub>Ic</sub><br>(MN m <sup>-1.5</sup> ) | HV30<br>NPL value | Sample | K <sub>Ic</sub><br>(MN m <sup>-1.5</sup> ) | HV30<br>NPL value |
|--------|--------------------------------------------|-------------------|--------|--------------------------------------------|-------------------|
| B1     | $9.22\pm0.13$                              | 1778              | Н3     | $12.03\pm0.14$                             | 1364              |
| B2     | $9.99\pm0.13$                              | 1626              | K313   | $9.27\pm0.09$                              | 1726              |
| H1     | $8.90\pm0.18$                              | 1810              | K420   | $11.67\pm0.07$                             | 1486              |
| H2     | $9.96 \pm 0.20$                            | 1592              | K3560  | $18.93 \pm 0.11$                           | 996               |



Fig 3 Plansee SEPB test results.



Fig 4 Comparison of UPC and Plansee SEPB data.



Fig 5 BAM SEVNB test results.

The results from the BAM SEVNB tests (APPENDIX B) are shown plotted against the radius of the diamond notch in Fig 5.

Figure 5 also includes the Plansee SEB test data, where it was assumed that the notch radius was  $0 \mu m$  for the purpose of comparison. The BAM data fall into two types

- one set with a clear dependence of  $K_{Ic}$  on notch radius, with the result from the smallest radius approaching that of the Plansee result.
- one set that appears to be independent of the notch radius (K3560 and K420). In this case the results are lower than the Plansee data.

Thus, it would appear that none of the diamond notch results are valid and this technique for precracking requires further research before it could be widely recommended for hardmetals.

#### 4.2 CHEVRON NOTCH SHORT ROD TESTS

The results from the chevron short rod tests from Teledyne and Hughes (APPENDIX B) are summarised in Table 8 and compared in Fig 6.



Fig 6 Comparison of chevron notch short rod test results.

| Sample*   | Teledyne<br>K <sub>IcSR</sub><br>MN m <sup>-1.5</sup> | Comments                                        | Sample*   | Hughes<br>K <sub>IcSR</sub><br>MN m <sup>-1.5</sup> | Comments                                             |
|-----------|-------------------------------------------------------|-------------------------------------------------|-----------|-----------------------------------------------------|------------------------------------------------------|
| H1 (3)    | 9.9+                                                  | 2 samples – diameter<br>too big for valid test. | H1 (5)    | 7.5                                                 |                                                      |
| H2 (4)    | 12.2                                                  |                                                 | H2 (5)    | 7.9++                                               | But all considered<br>invalid. p factor<br>too high. |
| H3        | -                                                     | All samples diameter too big for tests.         | H3 (5)    | 10.2                                                |                                                      |
| K313 (5)  | 9.2                                                   |                                                 | K313 (5)  | 8.6                                                 |                                                      |
| K420 (6)  | 10.8                                                  |                                                 | K420 (5)  | 10.2                                                |                                                      |
| K3560 (5) | 17.5                                                  |                                                 | K3560 (6) | 17.3                                                |                                                      |

 Table 8
 Mean values for chevron notch tests

\*

Numbers in brackets – number of tests thought to be valid. Mean of two values of about 7 and one of 11 MN m<sup>-1.5</sup>. If the latter is excluded then agreement with Hughes data is better. If  $K_{DL}$  value (12.0 MN m<sup>-1.5</sup>) is used then the agreement with the Teledyne data is improved.

++

The standard deviation of the Hughes results was about 0.2-0.8 MN m<sup>-1.5</sup> with the higher values associated with the softer grades. The mean values of the chevron notch short rod data from Hughes are shown plotted against Palmqvist data (mean values also obtained by Hughes) in Fig 7. In every case the short rod data are lower than the Palmqvist results, although for the toughest grade, K3560, the difference was quite small. The chevron notch results from Hughes and Teledyne are compared with the Plansee SEPB results in Fig 8. There was reasonable agreement between the short rod values and the Plansee SEPB data although the uncertainties for the short rod data were much larger than those from the SEPB method. Also, three grades K3560, H3 and H1 gave significantly lower values and one grade, H2, significantly higher values. The reasons for these differences are not known.



Fig 7 Comparison of Hughes chevron notch short rod data and Palmqvist results.



Fig 8 Comparison of Plansee SEVNB and chevron notch short rod test results.

#### 4.3 PALMQVIST TESTS

The Palmqvist results are summarised in 4 parts in Tables 9-12, including:

- Table 9 Measurements performed by NPL and Hughes on all samples (mean values).
- Table 10 data on the single indents made at NPL.
- Table 11 data on tests on the polished surface provided by NPL.
- Table 12 data on tests made on surfaces prepared by participants.

## Table 9 Mean values of Palmqvist crack lengths and toughnessvalues – NPL prepared surface.

|        |      | NPL          | Toughness            |      | Hughes       | Toughness            |
|--------|------|--------------|----------------------|------|--------------|----------------------|
| Sample | HV30 | crack length | W <sub>K</sub>       | HV30 | crack length | W <sub>K</sub>       |
|        |      | μm           | MN m <sup>-3/2</sup> |      | μm           | MN m <sup>-3/2</sup> |
| B1     | 1778 | 509          | 8.9                  | 1779 | 503          | 8.9                  |
| B2     | 1626 | 436          | 9.2                  | 1574 | 444          | 9.0                  |
| H1     | 1810 | 538          | 8.7                  | 1741 | 533          | 8.6                  |
| H2     | 1592 | 419          | 9.3                  | 1548 | 430          | 9.0                  |
| Н3     | 1364 | 178          | 13.2                 | 1290 | 183          | 12.6                 |
| TCM10  | 1636 | 620          | 7.7                  | 1580 | 611          | 7.6                  |
| K313   | 1726 | 439          | 9.4                  | 1767 | 456          | 9.4                  |
| K420   | 1486 | 323          | 10.2                 | 1568 | 310          | 10.7                 |
| K3560  | 996* | 167          | 21.2                 | 993* | 223          | 18.3                 |

#### NPL and Hughes data (mean values; \* HV100 – K3560)

| Sample | HV30<br>NPL value | Cermep<br>crack length<br>µm | Toughness<br>W <sub>K</sub><br>MN m <sup>-3/2</sup> | HV30<br>NPL value | Plansee<br>crack length<br>µm | Toughness<br>W <sub>K</sub><br>MN m <sup>-3/2</sup> |
|--------|-------------------|------------------------------|-----------------------------------------------------|-------------------|-------------------------------|-----------------------------------------------------|
| B1     | 1778              | 498                          | 9.0                                                 | 1778              | 499                           | 9.0                                                 |
| B2     | 1626              | 438                          | 9.2                                                 | 1626              | 424                           | 9.3                                                 |
| H1     | 1810              | 544                          | 8.7                                                 | 1810              | 541                           | 8.7                                                 |
| H2     | 1592              | 436                          | 9.1                                                 | 1592              | 446                           | 9.0                                                 |
| Н3     | 1364              | 186                          | 12.9                                                | 1364              | 160                           | 13.9                                                |
| TCM10  | 1636              | 636                          | 7.6                                                 | 1636              | 640                           | 7.6                                                 |
| K313   | 1726              | 442                          | 9.4                                                 | 1726              | 450                           | 9.3                                                 |
| K420   | 1486              | 328                          | 10.1                                                | 1486              | 345                           | 9.9                                                 |
| K3560  | 996*              | 28                           | 51.8                                                | 996*              | 279                           | 16.4                                                |

## Table 10 NPL indent – Data from different organisations

\* HV100

| Sample | HV30<br>NPL value | <b>Teledyne</b><br>crack length<br>μm | Toughness<br>W <sub>K</sub><br>MN m <sup>-3/2</sup> | HV30<br>NPL value | Hughes<br>crack length<br>µm | Toughness<br>W <sub>K</sub><br>MN m <sup>-3/2</sup> |
|--------|-------------------|---------------------------------------|-----------------------------------------------------|-------------------|------------------------------|-----------------------------------------------------|
| B1     | 1778              | 512                                   | 8.9                                                 | 1778              | 492                          | 9.0                                                 |
| B2     | 1626              | 440                                   | 9.1                                                 | 1626              | 437                          | 9.2                                                 |
| H1     | 1810              | 556                                   | 8.6                                                 | 1810              | 539                          | 8.7                                                 |
| H2     | 1592              | 496                                   | 8.5                                                 | 1592              | 460                          | 8.9                                                 |
| Н3     | 1364              | 200                                   | 12.4                                                | 1364              | 186                          | 12.9                                                |
| TCM10  | 1636              | 648                                   | 7.6                                                 | 1636              | 621                          | 7.7                                                 |
| K313   | 1726              | 440                                   | 9.4                                                 | 1726              | 443                          | 9.4                                                 |
| K420   | 1486              | 348                                   | 9.8                                                 | 1486              | 353                          | 9.8                                                 |
| K3560  | 996*              | 276                                   | 16.5                                                | 996*              | 121                          | 24.9                                                |

| Sample | HV30<br>NPL value | <b>Baildonit</b><br>crack length<br>μm | Toughness<br>W <sub>K</sub><br>MN m <sup>-3/2</sup> | HV30<br>NPL value | UPC<br>crack length<br>µm | Toughness<br>W <sub>K</sub><br>MN m <sup>-3/2</sup> |
|--------|-------------------|----------------------------------------|-----------------------------------------------------|-------------------|---------------------------|-----------------------------------------------------|
| B1     | 1778              | 434                                    | 9.6                                                 | 1778              | 492                       | 9.0                                                 |
| B2     | 1626              | 406                                    | 9.5                                                 | 1626              | 448                       | 9.1                                                 |
| H1     | 1810              | 483                                    | 9.2                                                 | 1810              | 568                       | 8.5                                                 |
| H2     | 1592              | 431                                    | 9.1                                                 | 1592              | 420                       | 9.3                                                 |
| H3     | 1364              | 154                                    | 14.2                                                | 1364              | 172                       | 13.4                                                |
| TCM10  | 1636              | 606                                    | 7.8                                                 | 1636              | 648                       | 7.6                                                 |
| K313   | 1726              | 462                                    | 9.2                                                 | 1726              | 412                       | 9.7                                                 |
| K420   | 1486              | 315                                    | 10.3                                                | 1486              | 288                       | 10.8                                                |
| K3560  | 996*              |                                        |                                                     | 996*              | 188                       | 20.0                                                |

## Table 10 (continued) NPL indent – Data from different organisations

\* HV100

| Sample | HV30<br>NPL value | NPL<br>crack length<br>µm | Toughness<br>W <sub>K</sub><br>MN m <sup>-3/2</sup> | HV30<br>NPL value | BAM<br>crack length<br>μm | Toughness<br>W <sub>K</sub><br>MN m <sup>-3/2</sup> |
|--------|-------------------|---------------------------|-----------------------------------------------------|-------------------|---------------------------|-----------------------------------------------------|
| B1     | 1778              | 509                       | 8.9                                                 | 1778              | 508                       | 8.9                                                 |
| B2     | 1626              | 436                       | 9.2                                                 | 1626              | 440                       | 9.1                                                 |
| H1     | 1810              | 538                       | 8.7                                                 | 1810              | 547                       | 8.7                                                 |
| H2     | 1592              | 419                       | 9.3                                                 | 1592              | 468                       | 8.8                                                 |
| Н3     | 1364              | 178                       | 13.2                                                | 1364              | 164                       | 13.7                                                |
| TCM10  | 1636              | 620                       | 7.7                                                 | 1636              | 634                       | 7.6                                                 |
| K313   | 1726              | 439                       | 9.4                                                 | 1726              | 460                       | 9.2                                                 |
| K420   | 1486              | 323                       | 10.2                                                | 1486              | 349                       | 9.8                                                 |
| K3560  | 996*              | 167                       | 21.2                                                | 996*              | 291                       | 16.1                                                |

| Sample | HV30<br>NPL value |     | Cermep<br>crack length<br>um | Mean crack<br>length<br>um | Toughness<br>W <sub>K</sub><br>MN m <sup>-3/2</sup> |      |
|--------|-------------------|-----|------------------------------|----------------------------|-----------------------------------------------------|------|
| B1     | 1778              | 490 | 504                          | 498                        | 497                                                 | 9.0  |
| B2     | 1626              | 438 | 430                          | 430                        | 433                                                 | 9.2  |
| H1     | 1810              | 518 | 550                          | 542                        | 537                                                 | 8.7  |
| H2     | 1592              | 424 | 412                          | 420                        | 419                                                 | 9.3  |
| H3     | 1364              | 156 | 158                          | 186                        | 167                                                 | 13.6 |
| TCM10  | 1636              | 638 | 640                          | 634                        | 637                                                 | 7.6  |
| K313   | 1726              | 424 | 448                          | 456                        | 443                                                 | 9.4  |
| K420   | 1486              | 318 | 326                          | 322                        | 322                                                 | 10.2 |
| K3560  | 996*              |     |                              |                            |                                                     |      |

 Table 11
 NPL prepared surface – Data from different organisations

\* HV100

| Sample HV30 |      |     | Plansee<br>crack length | Mean crack<br>length | Toughness<br>W <sub>K</sub> |      |
|-------------|------|-----|-------------------------|----------------------|-----------------------------|------|
|             |      |     | μm                      | μm                   | MN $m^{-3/2}$               |      |
| B1          | 1778 | 493 | 492                     | 501                  | 495                         | 9.0  |
| B2          | 1626 | 432 | 424                     | 428                  | 428                         | 9.3  |
| H1          | 1810 | 529 | 519                     | 537                  | 528                         | 8.8  |
| H2          | 1592 | 389 | 409                     | 413                  | 404                         | 9.4  |
| H3          | 1364 | 143 | 160                     | 150                  | 151                         | 14.3 |
| TCM10       | 1636 | 640 | 638                     | 636                  | 638                         | 7.6  |
| K313        | 1726 | 430 | 417                     | 458                  | 435                         | 9.5  |
| K420        | 1486 | 322 | 310                     | 310                  | 314                         | 10.3 |
| K3560       | 996* | 288 | 296                     | 332                  | 305                         | 17.5 |

| Table 11 (continued | ) NPL | prepared s | urface – | Data | from | different | organisations |
|---------------------|-------|------------|----------|------|------|-----------|---------------|
|---------------------|-------|------------|----------|------|------|-----------|---------------|

| Sample | HV30<br>NPL value |     | Teledyne<br>crack length<br>um | Mean crack<br>length<br>um | Toughness<br>W <sub>K</sub><br>MN m <sup>-3/2</sup> |      |
|--------|-------------------|-----|--------------------------------|----------------------------|-----------------------------------------------------|------|
| B1     | 1778              | 508 | 516                            | 512                        | 512                                                 | 8.9  |
| B2     | 1626              | 436 | 444                            | 452                        | 444                                                 | 9.1  |
| H1     | 1810              | 548 | 556                            | 560                        | 555                                                 | 8.6  |
| H2     | 1592              | 436 | 440                            | 452                        | 443                                                 | 9.0  |
| Н3     | 1364              | 188 | 188                            | 192                        | 189                                                 | 12.8 |
| TCM10  | 1636              | 620 | 624                            | 608                        | 617                                                 | 7.7  |
| K313   | 1726              | 448 | 464                            | 440                        | 451                                                 | 9.3  |
| K420   | 1486              | 352 | 348                            | 348                        | 349                                                 | 9.8  |
| K3560  | 996*              | 248 | 280                            | 244                        | 257                                                 | 17.1 |

\* HV100

| Sample | HV30<br>NPL value |   | NPL <sup>+</sup><br>crack length<br>μm | Mean crack<br>length<br>µm | Toughness<br>W <sub>K</sub><br>MN m <sup>-3/2</sup> |      |
|--------|-------------------|---|----------------------------------------|----------------------------|-----------------------------------------------------|------|
| B1     | 1778              | + | See Table B1                           | +                          | 509                                                 | 8.9  |
| B2     | 1626              | + | +                                      | +                          | 436                                                 | 9.2  |
| H1     | 1810              | + | +                                      | +                          | 538                                                 | 8.7  |
| H2     | 1592              | + | +                                      | +                          | 419                                                 | 9.3  |
| H3     | 1364              | + | +                                      | +                          | 178                                                 | 13.2 |
| TCM10  | 1636              | + | +                                      | +                          | 620                                                 | 7.7  |
| K313   | 1726              | + | +                                      | +                          | 439                                                 | 9.4  |
| K420   | 1486              | + | +                                      | +                          | 323                                                 | 10.2 |
| K3560  | 996*              | + | +                                      | +                          | 167                                                 | 21.2 |

\* HV100 <sup>+</sup> Data taken from means of 16 tests (Appendix B, Table B1)

| Sample | HV30<br>NPL value |     | Hughes<br>crack length | Mean crack<br>length | Toughness<br>W <sub>K</sub><br>MN m <sup>-3/2</sup> |      |
|--------|-------------------|-----|------------------------|----------------------|-----------------------------------------------------|------|
| B1     | 1778              | 496 | 502                    | 511                  | 503                                                 | 8.9  |
| B2     | 1626              | 432 | 464                    | 436                  | 444                                                 | 9.1  |
| H1     | 1810              | 539 | 528                    | 533                  | 533                                                 | 8.8  |
| H2     | 1592              | 437 | 426                    | 426                  | 430                                                 | 9.2  |
| H3     | 1364              | 189 | 178                    | 183                  | 183                                                 | 13.0 |
| TCM10  | 1636              | 618 | 618                    | 598                  | 611                                                 | 7.8  |
| K313   | 1726              | 457 | 460                    | 451                  | 456                                                 | 9.3  |
| K420   | 1486              | 310 | 322                    | 299                  | 310                                                 | 10.4 |
| K3560  | 996*              | 248 | 192                    | 228                  | 223                                                 | 18.4 |

## Table 11 (Continued) NPL prepared surface – Data from different organisations

\* HV100

| Sample | HV30<br>NPL value | Baildonit<br>crack length |        |     | Mean crack<br>length | Toughness<br>$W_K$ |
|--------|-------------------|---------------------------|--------|-----|----------------------|--------------------|
| D1     | 1779              | 404                       | μm<br> | 172 | μm<br>482            |                    |
| DI     | 1//0              | 494                       | 400    | 4/3 | 402                  | 9.1                |
| B2     | 1626              | 420                       | 424    | 431 | 425                  | 9.3                |
| H1     | 1810              | 490                       | 518    | 532 | 513                  | 8.9                |
| H2     | 1592              | 413                       | 434    | 424 | 424                  | 9.2                |
| H3     | 1364              | 193                       | 172    | 168 | 178                  | 13.2               |
| TCM10  | 1636              | 606                       | 582    | 630 | 606                  | 7.8                |
| K313   | 1726              | 427                       | 466    | 431 | 441                  | 9.4                |
| K420   | 1486              | 319                       | 329    | 308 | 319                  | 10.3               |
| K3560  | 996*              |                           |        |     | 0                    |                    |

| Table 11 (Continued) NPL prepared surface – Data from different of | it organisations |
|--------------------------------------------------------------------|------------------|
|--------------------------------------------------------------------|------------------|

| Sample HV30<br>NPL value |      | UPC<br>crack length |     |     | Mean crack length | Toughness $W_K$     |
|--------------------------|------|---------------------|-----|-----|-------------------|---------------------|
|                          |      |                     | μm  |     | μm                | MN m <sup>3/2</sup> |
| B1                       | 1778 | 500                 | 496 | 512 | 503               | 8.9                 |
| B2                       | 1626 | 428                 | 444 | 408 | 427               | 9.3                 |
| H1                       | 1810 | 556                 | 564 | 568 | 563               | 8.5                 |
| H2                       | 1592 | 396                 | 392 | 384 | 391               | 9.6                 |
| H3                       | 1364 | 132                 | 136 | 144 | 137               | 15.0                |
| TCM10                    | 1636 | 736                 | 744 | 764 | 748               | 7.0                 |
| K313                     | 1726 | 456                 | 436 | 448 | 447               | 9.4                 |
| K420                     | 1486 | 288                 | 276 | 264 | 276               | 11.0                |
| K3560                    | 996* | 192                 | 180 | 164 | 179               | 20.5                |

\* HV100

| Sample | HV30<br>NPL value |     | BAM<br>crack length |     |     | Toughness<br>W <sub>K</sub> |
|--------|-------------------|-----|---------------------|-----|-----|-----------------------------|
|        | T T E Vulue       |     | μm                  |     | μm  | $MN \text{ m}^{-5/2}$       |
| B1     | 1778              | 502 | 506                 | 505 | 504 | 8.9                         |
| B2     | 1626              | 452 | 442                 | 422 | 439 | 9.2                         |
| H1     | 1810              | 543 | 531                 | 534 | 536 | 8.7                         |
| H2     | 1592              | 434 | 429                 | 408 | 424 | 9.2                         |
| Н3     | 1364              | 168 | 170                 | 162 | 167 | 13.6                        |
| TCM10  | 1636              | 592 | 622                 | 633 | 616 | 7.8                         |
| K313   | 1726              | 433 | 426                 | 455 | 438 | 9.4                         |
| K420   | 1486              | 307 | 308                 | 320 | 312 | 10.4                        |
| K3560  | 996*              |     |                     |     |     |                             |

| Sample | HV30<br>NPL value |     | Cermep<br>crack length<br>µm | Mean crack<br>length<br>µm | Toughness<br>W <sub>K</sub><br>MN m <sup>-3/2</sup> |      |
|--------|-------------------|-----|------------------------------|----------------------------|-----------------------------------------------------|------|
| B1     | 1778              | 398 | 406                          | 398                        | 401                                                 | 10.0 |
| B2     | 1626              | 330 | 296                          | 246                        | 291                                                 | 11.3 |
| H1     | 1810              | 378 | 388                          | 378                        | 381                                                 | 10.4 |
| H2     | 1592              | 388 | 382                          | 384                        | 385                                                 | 9.7  |
| H3     | 1364              | 156 | 150                          | 156                        | 154                                                 | 14.2 |
| TCM10  | 1636              | 526 | 538                          | 490                        | 518                                                 | 8.5  |
| K313   | 1726              | 428 | 394                          | 412                        | 411                                                 | 9.7  |
| K420   | 1486              | 296 | 296                          | 294                        | 295                                                 | 10.7 |
| K3560  | 996*              |     |                              |                            |                                                     |      |

## Table 12 Organisation prepared surface – Data from different organisations

\* HV100

| Sample HV30<br>NPL value |           |     | Plansee<br>crack length | Mean crack<br>length | Toughness<br>W <sub>K</sub> |                       |
|--------------------------|-----------|-----|-------------------------|----------------------|-----------------------------|-----------------------|
|                          | THE Value |     | μm                      |                      | μm                          | $MN \text{ m}^{-3/2}$ |
| B1                       | 1778      | 521 | 507                     | 494                  | 507                         | 8.9                   |
| B2                       | 1626      | 395 | 383                     | 393                  | 390                         | 9.7                   |
| H1                       | 1810      | 522 | 513                     | 515                  | 517                         | 8.9                   |
| H2                       | 1592      | 371 | 373                     | 375                  | 373                         | 9.8                   |
| H3                       | 1364      | 148 | 160                     | 150                  | 153                         | 14.2                  |
| TCM10                    | 1636      | 622 | 636                     | 648                  | 635                         | 7.6                   |
| K313                     | 1726      | 464 | 478                     | 460                  | 467                         | 9.1                   |
| K420                     | 1486      | 340 | 349                     | 342                  | 344                         | 9.9                   |
| K3560                    | 996*      | 286 | 320                     | 207                  | 271                         | 18.6                  |

\* HV100

| Sample | HV30<br>NPL value |     | Teledyne<br>crack length<br>µm | Mean crack<br>length<br>um | Toughness<br>W <sub>K</sub><br>MN m <sup>-3/2</sup> |      |
|--------|-------------------|-----|--------------------------------|----------------------------|-----------------------------------------------------|------|
| B1     | 1778              | 540 | 536                            | 544                        | 540                                                 | 8.6  |
| B2     | 1626              | 508 | 488                            | 496                        | 497                                                 | 8.6  |
| H1     | 1810              | 572 | 568                            | 568                        | 569                                                 | 8.5  |
| H2     | 1592              | 512 | 508                            | 512                        | 511                                                 | 8.4  |
| H3     | 1364              | 300 | 276                            | 260                        | 279                                                 | 10.5 |
| TCM10  | 1636              | 604 | 596                            | 608                        | 603                                                 | 7.8  |
| K313   | 1726              | 544 | 544                            | 504                        | 531                                                 | 8.6  |
| K420   | 1486              | 388 | 368                            | 360                        | 372                                                 | 9.5  |
| K3560  | 996*              | 248 | 272                            | 328                        | 283                                                 | 16.3 |

| Sample | HV30<br>NPL value |     | Hughes<br>crack length | Mean crack<br>length | Toughness<br>$W_K$<br>MN m <sup>-3/2</sup> |      |
|--------|-------------------|-----|------------------------|----------------------|--------------------------------------------|------|
| B1     | 1778              | 503 | 498                    | 493                  | 498                                        | 9.0  |
| B2     | 1626              | 415 | 415                    | 429                  | 420                                        | 9.4  |
| H1     | 1810              | 542 | 536                    | 530                  | 536                                        | 8.7  |
| H2     | 1592              | 403 | 406                    | 426                  | 412                                        | 9.4  |
| H3     | 1364              | 172 | 192                    | 206                  | 190                                        | 12.7 |
| TCM10  | 1636              | 584 | 553                    | 499                  | 545                                        | 8.2  |
| K313   | 1726              | 432 | 426                    | 378                  | 412                                        | 9.7  |
| K420   | 1486              | 257 | 305                    | 231                  | 264                                        | 11.3 |
| K3560  | 996*              | 228 | 284                    | 257                  | 256                                        | 17.1 |

# Table 12 (Continued) Organisation prepared surface – Data from different organisations

\* HV100

| Sample | HV30<br>NPL value |     | Baildonit<br>crack length | Mean crack<br>length | Toughness<br>$W_K$<br>MN m <sup>-3/2</sup> |      |
|--------|-------------------|-----|---------------------------|----------------------|--------------------------------------------|------|
| B1     | 1778              | 469 | 441                       | 462                  | 457                                        | 9.4  |
| B2     | 1626              | 399 | 406                       | 396                  | 400                                        | 9.6  |
| H1     | 1810              | 483 | 494                       | 480                  | 486                                        | 9.2  |
| H2     | 1592              | 322 | 340                       | 343                  | 335                                        | 10.4 |
| Н3     | 1364              | 182 | 172                       | 186                  | 180                                        | 13.1 |
| TCM10  | 1636              | 515 | 536                       | 529                  | 527                                        | 8.4  |
| K313   | 1726              | 434 | 413                       | 417                  | 421                                        | 9.6  |
| K420   | 1486              | 308 | 294                       | 301                  | 301                                        | 10.6 |
| K3560  | 996*              |     |                           |                      |                                            |      |

| Sample | HV30      |                                                                                                                                                                                                                                                    | UPC<br>crack length  |     | Mean crack length | Toughness<br>W <sub>K</sub> |
|--------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----|-------------------|-----------------------------|
|        | NPL value | OPC     Mean crack       crack length     μm       μm     μm       492     500     496       436     420     404       548     560     564       548     388     384       120     128     132       760     724     740       456     408     436 | MN m <sup>-3/2</sup> |     |                   |                             |
| B1     | 1778      | 492                                                                                                                                                                                                                                                | 500                  | 496 | 496               | 9.0                         |
| B2     | 1626      | 436                                                                                                                                                                                                                                                | 420                  | 404 | 420               | 9.4                         |
| H1     | 1810      | 548                                                                                                                                                                                                                                                | 560                  | 564 | 557               | 8.6                         |
| H2     | 1592      | 380                                                                                                                                                                                                                                                | 388                  | 384 | 384               | 9.7                         |
| H3     | 1364      | 120                                                                                                                                                                                                                                                | 128                  | 132 | 127               | 15.6                        |
| TCM10  | 1636      | 760                                                                                                                                                                                                                                                | 724                  | 740 | 741               | 7.1                         |
| K313   | 1726      | 456                                                                                                                                                                                                                                                | 408                  | 436 | 433               | 9.5                         |
| K420   | 1486      | 284                                                                                                                                                                                                                                                | 296                  | 260 | 280               | 11.0                        |
| K3560  | 996*      | 156                                                                                                                                                                                                                                                | 164                  | 176 | 165               | 21.3                        |

# Table 12 (Continued) Organisation prepared surface – Data from different organisations

\* HV100

| Sample | HV30      |     | BAM<br>crack length |     |     | Toughness<br>W <sub>K</sub> |
|--------|-----------|-----|---------------------|-----|-----|-----------------------------|
| -      | NPL value |     | μm                  |     | μm  | MN m <sup>-3/2</sup>        |
| B1     | 1778      | 488 | 486                 | 486 | 487 | 9.1                         |
| B2     | 1626      | 406 | 422                 | 426 | 418 | 9.4                         |
| H1     | 1810      | 420 | 526                 | 514 | 487 | 9.2                         |
| H2     | 1592      | 369 | 405                 | 417 | 397 | 9.5                         |
| Н3     | 1364      | 150 | 160                 | 150 | 153 | 14.2                        |
| TCM10  | 1636      | 570 | 626                 | 641 | 612 | 7.8                         |
| K313   | 1726      | 448 | 453                 | 443 | 448 | 9.3                         |
| K420   | 1486      | 273 | 237                 | 287 | 266 | 11.3                        |
| K3560  | 996*      |     |                     |     |     |                             |

The uncertainty in Palmqvist measurements that can arise from two sources, measurement of hardness and measurement of crack length, is demonstrated in Figs 9 and 10, where plots are shown of the range of Palmqvist values that can be obtained assuming either a constant hardness or a constant crack length. Clearly crack length is a more important measurement issue, especially for crack length values of less than 200  $\mu$ m. For this reason, participants were asked to measure crack length only (although some participants also provided information on hardness as it was relatively easy to obtain at the same time as measuring crack length) and Palmqvist toughness values were calculated using the mean values of hardness obtained at NPL.

For each material about 14-15 testpieces were prepared (using the principles outlined in the NPL Good Practice Guide) for circulation to potential participants for Palmqvist measurements. Each sample was indented at HV30 (plus HV100 for K3560) and the results obtained at NPL are given in Table B1 (APPENDIX B) and plotted as crack length against hardness in Fig 11 and Palmqvist toughness,  $W_K$ , against hardness in Fig 12. These plots give a visual indication of spread in values for each material.

The NPL data are plotted against the Plansee SEPB data as cluster plots in Fig 13 and as mean values in Fig 14. The agreement is good, even for the tough grade K3560, which showed a high standard deviation in crack length. In fact there was probably better agreement between the Palmqvist data and the SEPB results than between the short rod and the SEPB methods.



Fig 9 Effect of differences in crack length at constant hardness.


Fig 10 Effect of differences in hardness at constant crack length.



Fig 11 NPL data (single indent) – crack lengths.



Fig 12 NPL data (single indent) – Palmqvist toughness.



Fig 13 Comparison of Plansee SEPB and NPL Palmqvist data (log scale).

A comparison of results from all the participating organisations is shown in Figs 14-16, where the three figures show

Fig 14 - data on the NPL single indent.
Fig 15 - data on the NPL polished surface.
Fig 16 - data on the surface polished by the participating organisation.

*NB:* Hardness data is HV100 for the softest hardmetal; HV30 for the remainder in Figs 14-16.

Each figure has three plots:

- crack length against hardness.
- Palmqvist toughness against hardness.
- expanded plot of the full toughness/hardness graph for the harder grades.

A coefficient of variation (CV) was calculated for each material in each of the different groups of measurements (Table 13) and this CV is shown in Fig 17 plotted against hardness for the different measurement strategies. The coefficient of variation decreases with increasing crack length (increasing hardness; decreasing toughness). It was significantly higher when participants were allowed to prepare their own surfaces (including some that were not annealed), but typically varied from 1-10% respectively, over a hardness range of 1800-1200 (HV30). The uncertainty expressed as the coefficient of variation in crack length  $CV_L$ , for the measurements on the NPL prepared surfaces can be written as a function of hardness

$$Log_{10} CV_L = a - bH$$
(7)

where a and be are constants having values of 2.73 and 0.00125. Typically this corresponds to a standard deviation (SD) of about  $\pm$  50 µm at a mean crack length of 150 µm at a Vickers hardness of about 1000 HV100 with a calculated W<sub>K</sub> of about 22  $\pm$  4 MN m<sup>-3/2</sup>. Partial differentiation of expression (2) shows that the fractional uncertainty in W<sub>K</sub> is equal to half the fractional uncertainty in crack length i.e. equivalent to about 15% at HV1000 and 1-2% at HV1000.



Fig 14 NPL single indent.



Fig 15 NPL polished surface.



Fig 16 Organisation polished surface.

| Sample | HV   | CV, %<br>NPL single<br>indent | CV, %<br>NPL prepared<br>surface | CV, %<br>Organisation<br>prepared surface |
|--------|------|-------------------------------|----------------------------------|-------------------------------------------|
| K3560  | 996  | 32.2                          | 25.1                             | 25.4                                      |
| H3     | 1364 | 8.8                           | 10.3                             | 26                                        |
| K420   | 1486 | 6.7                           | 6.4                              | 12.5                                      |
| H2     | 1592 | 5.9                           | 3.8                              | 12.7                                      |
| B2     | 1626 | 3                             | 1.7                              | 14.1                                      |
| TCM10  | 1636 | 2.3                           | 7.3                              | 12.1                                      |
| K313   | 1726 | 3.5                           | 1.6                              | 8.8                                       |
| B1     | 1778 | 5.1                           | 1.8                              | 8.6                                       |
| H1     | 1810 | 4.6                           | 2.8                              | 11.8                                      |

 Table 13
 Coefficient of variation (CV) of Palmqvist Crack Lengths

# Table 14 Ranking of Crack Lengths – Anneal or Not

| B1 | B2 | H1 | H2 | Н3 | TCM10 | K313 | K420 | K3560 | Mean<br>ranking | Organisation | Ordered<br>ranking | Organisation | Anneal<br>(Y) or<br>(N) |
|----|----|----|----|----|-------|------|------|-------|-----------------|--------------|--------------------|--------------|-------------------------|
| 1  | 1  | 1  | 4  | 4  | 1     | 1    | 4    |       | 2.3             | CERMeP       | 2.3                | CERMeP       | Ν                       |
| 6  | 2  | 4  | 2  | 2  | 7     | 7    | 7    | 5     | 4.3             | Plansee      | 3.1                | Baildonit    | Y                       |
| 8  | 8  | 8  | 8  | 8  | 4     | 8    | 8    | 6     | 8.0             | Teledyne     | 3.7                | BAM          | Ν                       |
| 5  | 5  | 5  | 6  | 7  | 3     | 2    | 1    | 3     | 4.4             | Hughes       | 4.0                | UPC          | Ν                       |
| 2  | 3  | 2  | 1  | 6  | 2     | 3    | 5    |       | 3.1             | Baildonit    | 4.3                | Plansee      | Y                       |
| 4  | 6  | 7  | 3  | 1  | 8     | 4    | 3    | 1     | 4.0             | UPC          | 4.4                | Hughes       | Ν                       |
| 3  | 4  | 3  | 5  | 3  | 5     | 6    | 2    |       | 3.7             | BAM          | 6.1                | NPL          | Y                       |
| 7  | 7  | 6  | 7  | 5  | 6     | 5    | 6    | 2     | 6.1             | NPL          | 8.0                | Teledyne     | Y                       |

The measured crack lengths for each testpiece were ranked by organisation, Table 14, to see if there was a systematic effect of annealing. The lower the ranking number the shorter the crack length (implying the greater the effect of residual stress.) The results were not obviously clear cut although there were more Ns in the top half of the rank (i.e. shorter crack lengths corresponding to testpieces that had not been annealed) than in the lower half.



Fig 17 Effect of hardness and surface preparation method on coefficient of variation of Palmqvist crack lengths.

### 5 Conclusion

An interlaboratory exercise was conducted to generate underpinning technical information on toughness tests for hardmetals. The results will enable good practice for toughness tests to be developed.

More than ten industrial organisations participated, either by correspondence, supply of materials or by conducting tests. Eight organisations were able to complete Palmqvist tests and two completed short rod chevron notch tests; however, only three organisations were able to provide single edge beam data. Good statistics were obtained on the Palmqvist data that have enabled a quantitative assessment of uncertainties to be performed for this relatively simple test. Single edge precracked beam data was thought to be closest to the "true" value and most of the short rod chevron notch test data compared reasonably well with these results. However, care was needed in testpiece preparation to ensure a good correlation between data from the Palmqvist tests and the single edge precracked beam results.

Following circulation of this report of the interlaboratory exercise, an ISO Technology Trends Assessment document is planned, as a first step in recommending appropriate suitable test methods that will have wider acceptance across industries that make and use hardmetals.

### 6 References

- 1. Warren, R. and Matzke, H.J. Indentation testing of a broad range of cemented carbides, *Proc 1st Int. Conf. on Science of Hard Materials*, edited by Viswanadham, Rowcliffe and Gurland, Plenum Press, New York, 1981, 563-82.
- 2. Shetty, D.K., Wright, I.G., Mincer, P.N. and Clauer, A.H. Indentation fracture toughness of WC-Co composites, *J. Mater. Sci.*, 1985, **20**, 1873-82.
- 3. Spiegler, R., Schmauder, S. and Sigl, L.S. J. Hard Mater. 1990, 1(3), 147-158.
- 4. Almond, E.A. and Roebuck, B. A Recommended Practice for a Plane Strain Fracture Toughness Test on Hardmetals, NPL Report DMA(B)4, February 1979.
- 5. Exner, H.E. The influence of sample preparation on Palmqvist's method for toughness testing of cemented carbides. *Trans. Met. Soc. AIME*, 1969, **245**, 677-683.
- 6. Viswanadham, R.K. and Venables, J.D. A simple method for evaluating cemented carbides. *Met. Trans. A.*, 1977, **8A**, 187-191.
- 7. Peters, C.T. The relationship between Palmqvist indentation toughness and bulk fracture toughness for some WC-Co cemented carbides. *J. Mater. Sci.*, 1979, **14** (7), 1619-1623.
- 8. Niihara, K., Morena, R. and Hasselman, D.P.H. Evaluation of K<sub>Ic</sub> of brittle solids by the indentation method with low crack-to-indent ratios. *J. Mater. Sci. Lett.*, 1982, **1**, 13-16.
- 9. Laugier, M.T. Palmqvist cracking in WC-Co composites. J. Mater. Sci. Lett., 1985, 4 (2), 207-210.
- 10. Singh, S. and Ramakrishnan, P. Palmqvist toughness of cemented carbide alloys. *Int. J. Refract. Hard Met.*, 1985, **4** (1), 27-30.
- 11. Laugier, M.T. Palmqvist indentation toughness in WC-Co composites. J. Mater. Sci. Lett., 1987, 6, 897-900.
- 12. Laugier, M.T. Palmqvist toughness in WC-Co composites viewed as a ductile/brittle transition. J. Mater. Sci. Lett., 1987, 6, 768-770.
- Shin, Y., Cao, W., Sargent, G. and Conrad, H. Effects of microstructure on hardness and Palmqvist fracture toughness of WC-Co alloys. *Mater. Sci. Eng.*, 1988, A105-A106, 377-382.
- Zhang, S.H. and Liu, Y.X. Palmqvist indentation fracture toughness of WC-Co cemented carbide alloys. *Modern Developments in Powder Metallurgy, Vol 19*, Orlando, Florida, USA, June 1988. Metal Powder Industries Federation, USA. 33-41.

- 15. Laugier, M.T. Validation of the Palmqvist indentation approach to toughness determination in WC-Co composites. *Ceram. Int.*, 1989, **15** (2), 121-125.
- 16. Heinonen, M. Comparison of Fracture Toughness Values for Cermet Materials, MSc Thesis, 1996, UMIST, Manchester, UK.
- 17. Roebuck, B. and Almond, E.A. Deformation and fracture processes and the physical metallurgy of WC/Co hardmetal. *Int. Mater. Rev.* 1988, **33**(2), 90-110.
- 18. Palmqvist, S. Metod att bestämma segheten hos spröda material, särsskilt hårdmetaller. *Jernkontorets. Ann.*, 1957, **141**, 300.
- 19. Palmqvist, S. Riβbildungsarbeit bei Vickers-Eindrücken als Maβ für die Zähigteit von Hartmetallen. *Arch. Eisenhutternwes.*, **33**, 1962, 629-634.
- 20. Roebuck, B., Bennett, E.G., Lay, L.A. and Morrell, A. NPL(GPG)009, June 1998. The Measurement of Palmqvist Toughness for Hard and Brittle Materials.
- 21. Schubert, W.D. personal communication, 2004.
- 22. Schubert, W.D, Neumeister, H., Kinger, G. and Lux, B. Hardness to toughness relationship of fine-grained WC-Co hardmetals, 14<sup>th</sup> International Plansee Seminar, V4, Reutte, Austria, May 1997 and Refractory Metals and Hard Materials, 16, 1988, 133-142.
- 23. Yohe, W.
- 24. Gee, M.G., Lay, L.A. and Roebuck, B. NPL DMM(A)33, October 1991. The Palmqvist Test Method for Ti-based Cermets and WC/Co Hardmetals.
- 25. Almond, E.A. and Roebuck, B. Precracking of Fracture-Toughness Specimens of Hardmetals by Wedge Indentation, Met. Technol., 1978, 5, 92-99.
- 26. Tada, Paris and Irvine. Stress Analysis of Cracks Handbook, St Louis, Paris Productions Inc, 1973, 2.13-2.15.
- 27. Luis Lanes Fatigue paper(s).

### 7 Acknowledgements

This document was written with the support of the DTI Materials Programme. Thanks are also due to international members of VAMAS TWA 21 for participation and comments and to participants in the Europe PM Association Hard Materials Group (EHMG) WINTEREV seminar at NPL in February 2004 on Toughness Testing for Hardmetals.

# **APPENDIX A**

### PALMQVIST TESTS Information from NPL Good Practice Guide – 1998 and from University of Vienna (Professor W-D Schubert)

### A1.1 TESTPIECES AND SAMPLE PREPARATION

## A1.1.1 TESTPIECE SIZE AND SAMPLING

Any testpiece shape can be used provided that it can be prepared with a flat surface and a flat opposing face for making the indentation. Hot mounting in a press gives flat and parallel faces. Cold mounting does not.

Diamond slicing or electrospark discharge machines are convenient to use for this purpose. However, the surfaces must then be polished. It is recommended that 0.2 mm of material is removed before the final polish to ensure that material typical of the bulk is tested. For example, the ISO Vickers Hardness Test for hardmetals (ISO 3878) specifies removal of 0.2 mm. It has also been suggested, in a dissertation by M Heinonen, University of Manchester Institute of Science and Technology, that the testpiece should be at least as thick as ten times the crack length. Thinner testpieces may not give representative results because the stress state will be dependent on the amount of material supporting the indentation and its associated cracks. It can be convenient to mount the testpieces in cold-setting or hot-setting resins to directly provide flat and parallel faces. However, if the testpieces are to be subsequently annealed to remove surface residual stresses then this can be a disadvantage since the testpiece has to be removed from the mount to put it in the annealing furnace (typically 800 °C for 1h in vacuum).

### A1.1.2 SURFACE PREPARATION

It is essential to prepare a surface which is flat so that the indentation is of regular geometry. It is recommended that the flatness is confirmed after the indentation is made by measuring the diagonal of the Vickers indentation in orthogonal directions. If the diagonals differ by more than 1% the surface is not flat and the test should be declared invalid.

Grinding should be done wet with metal-bonded 40  $\mu$ m diamond-impregnated discs since silicon carbide wheels introduce larger residual stresses than diamond. The grinding stage produces a planar surface which then needs to be polished. The recommended sequence of diamond abrasives is at least 30  $\mu$ m, followed by 6  $\mu$ m and 1  $\mu$ m. Napless cloths should be used for the final stages.

This process will produce stress-free surfaces if the final polishing stages are sufficiently long to remove all grinding damage. However, it is difficult to prove that this is the case without extensive comparisons of results from as-polished and polished/annealed testpieces. The main body of this appendix is taken from the NPL Good Practice Guide which recommends annealing at 800 °C for 1h in vacuum before making Palmqvist indentations. However, since the publication of the Guide Professor W-D Schubert's Group at the University of Vienna have

conducted extensive studies of the properties of very fine grained hardmetals, often containing alloy binder-phase. Because of the possibility of ageing in reactions in the binder-phase during an annealing step this group developed a mechanical polishing route prior to conducting indentation tests to minimise residual stresses (Fig A1 gives some representative results) and thin must be considered as an alternative in good testing procedure.



Fig A1 Effect of surface layer removal by polishing (Courtesy Prof W-D Schubert – TU Wien)

# A1.1.3 SURFACE CONDITION

It has been shown that surfaces free of residual stress are required for consistent results. No polishing procedure can guarantee a stress-free surface without tedious systematic measurements which are not feasible on a regular basis. At NPL all testpieces are polished so that the microstructure can be observed and then annealed at 800 °C for 1h in vacuum following the studies published by Exner. The newer grades of material with very fine WC grain sizes (less than about 0.8 µm as measured by the linear intercept technique on polished and etched sections) developed in recent years since Exner's work are likely to have even higher surface residual stresses. It may be that longer annealing times or even higher temperatures are required for these materials. In the absence of further work it would probably be sensible to recommend 2h at 800 °C. The annealing stage adds to the complexity of the sample preparation process but ensures that the surface is free from residual stresses. If measurements are performed on as-polished surfaces without an anneal this must be indicated in the test report.

# A.2 APPARATUS

The indentations should be introduced into the testpiece of interest using test machines calibrated to National Standards. The shape of the indentation should be checked regularly for damage to the indenter tip. The diagonal and crack dimensions can be measured using a microscope attached to the indentation test machine or separately but it should have been calibrated against a standard. Current practice at NPL is given in sections 4.3.1 and 4.3.2.

### A2.1 INDENTATION

At NPL indentation is carried out on a Vickers hardness testing machine in accordance with BS 427:1990 method for Vickers hardness test and for verification of Vickers hardness testing machine. A NAMAS certified diamond indenter is used.

### A2.2 INDENTATION AND CRACK MEASUREMENT

Indent diagonals and cracks are measured using a NAMAS accredited Reichert Univar microscope. The image is projected onto a projection screen which has been calibrated using a stage graticule traceable to national standards.

# A.3 PROCEDURE AND CONDITIONS OF TESTING

### A3.1 INDENTATIONS

Indentations should be made in a deadweight hardness machine which is calibrated at least annually. The recommended procedure is to make indentations using a Vickers diamond indenter at one load rather than a series of loads. The indentations can be made at 30 kgf or 60 kgf. However, 30 kgf is recommended. Two indentations should be made initially and the toughness values for each indentation compared. If they are within the measurement uncertainty associated with the procedure, the two measurements are considered satisfactory. If they differ by more than this uncertainty a third indentation is made and the result reported as an average with an associated standard deviation. If the two measurements are within the estimated measurement uncertainty then an average value of the two measurements is reported without a standard deviation.

It is also possible to make the measurement of W by indenting with a series of loads and plotting the total crack lengths obtained against the load for each indentation. If this method is used to obtain a value for  $W_G$  and  $W_K$  then it must be noted in the test report.

# A3.2 INDENTATION AND CRACK LENGTH MEASUREMENTS

It is recommended that the indentation diagonal and crack lengths are measured optically at a magnification of at least  $\times$ 500. Alternatively, the optical system of the Vickers hardness machine can be used ( $\times$ 100) as this has been shown to give equivalent results. The magnification used should be calibrated for each measurement session using a traceable grid.

Either take photographs of the indentation and cracks or project the image onto a measurement screen if a suitable microscope is available. Measure both indentation diagonals. Record both values. *If the diagonals differ by more than 2 mm at ×500 magnification the test should be repeated because of a lack of flatness of the testpiece.* 

There are two methods for measuring the crack length. The results are independent of the method. Either method can be used.

Method A:

Measure crack tip to crack tip for both diagonal directions. The total crack length is the sum of both these values minus the sum of the indentation diagonals. *If the magnification is*  $\times$ 500 this method is impractical because the crack tip to crack tip distance is usually too large to include in one image.

Method B:

Measure individual crack lengths at  $\times$ 500 from indentation corner to crack tip for each of the four cracks. Sum to give a total crack length. If the crack root does not coincide with the tip of the indentation diagonal measure the crack length from where the crack initiates along the edge of the indentation.

# A3.3 TEST VALIDITY

If there is more than one crack emanating from the indentation corner the indentation should be ignored as measurement is invalid.

If the total crack length is less than 40  $\mu$ m the test should be considered to be of a lower reliability. For a 60 kgf load this corresponds to a toughness value,  $W_G$ , of 7360 N m<sup>-1</sup> (or 25 MN m<sup>-3/2</sup> for  $W_K$ ) for a material with a hardness of 1100 HV60. These materials are likely to have coarse structures and the individual crack lengths at each indentation corner will be no more than one or two grains long. This is too short to be confident that the crack is sampling a representative volume of hardmetal.

If the indentation diagonals differ by more than about 4  $\mu$ m for an indentation load of 30 kgf the surface is not sufficiently flat and the test is invalid.

### A4 ANALYSIS

### A4.1 VICKERS HARDNESS

Take the average value of the two diagonals in mm and convert to a true value, d, in mm by dividing by the calibrated value for the magnification. The Vickers hardness, HV, is given by

$$HV = \frac{1.8544 \,\mathrm{P}}{\mathrm{d}^2}$$

where P is the load in kgf and d is the average indentation diagonal in mm. Express as HV30 or HV60 corresponding to the load used in kgf.

### The hardness number should be rounded to the nearest 5.

### A4.2 TOUGHNESS

Two different values for toughness can be calculated, Palmqvist toughness,  $W_G$ , and Palmqvist fracture toughness,  $W_K$ .

$$W_G = \frac{P}{T} (N \text{ mm}^{-1} \text{ or } J \text{ m}^{-2}, 1 \text{ N mm}^{-1} = 1000 \text{ J m}^{-2})$$

where for method 1 (simple indentation load) P is the load in N and T is the total crack length in mm and for method 2 (multiple loads) P/T is the inverse of the slope of a plot of total crack length against load.

$$W_{\rm K} = A \sqrt{\rm HV} \sqrt{W_{\rm G}} \quad (\rm MN \ m^{-3/2})$$

where A is a constant of value 0.0028

and HV is the Vickers hardness in N mm<sup>-2</sup> (i.e.  $9.81 \times$  numerical value of HV hardness number) and W<sub>G</sub> is in N mm<sup>-1</sup>.

Calculate both values and report with a mean value if two indentations/sample are made and a mean value and standard deviation if three or more indentations/sample are made.

### The results should be reported to three significant figures only.

# **APPENDIX B**

# **Toughness Tests for Hardmetals**

# **Detailed Results**

| Table B1       | - N<br>(i                                 | <b>NPL</b> Palmqvist data on all samples supplied to participants (includes HV30 and HV100 on material K3560).                                                              |                                                                                                                                                                                    |  |  |
|----------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Tables B2 – B8 | • D                                       | Data returned by Participan                                                                                                                                                 | ts                                                                                                                                                                                 |  |  |
|                | B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B | <ul> <li>32 Cermep</li> <li>33 Plansee</li> <li>34 Teledyne</li> <li>35 Hughes Christensen</li> <li>36 Baildonit</li> <li>37 UPC</li> <li>38 NPL</li> <li>39 BAM</li> </ul> | (Palmqvist)<br>(Palmqvist and SENB)<br>(Palmvist and Short Rod)<br>(Palmqvist and Short Rod)<br>(Palmqvist)<br>(Palmqvist and SENB)<br>(Palmqvist summary)<br>(Palmqvist and SENB) |  |  |

| Sample | Participant             | Hardness  | Crack length | W <sub>k</sub>       |
|--------|-------------------------|-----------|--------------|----------------------|
| Number | 1 articipant            | HV30      | μm           | MN m <sup>-3/2</sup> |
| 1      | Archived                | 1782      | 518          | 8.8                  |
| 2      | Hughes Christensen      | 1771      | 502          | 8.9                  |
| 3      | Marshalls               | 1763      | 507          | 8.9                  |
| 4      | Sandvik Hard Materials  | 1767      | 511          | 8.8                  |
| 5      | Kennametal              | 1780      | 513          | 8.9                  |
| 6      | Archived                | 1758      | 507          | 8.9                  |
| 7      | Universitat Politecnica | 1778      | 511          | 8.9                  |
| 8      | Konrad Friedrichs KG    | 1765      | 494          | 9.0                  |
| 9      | Archived                | 1804      | 504          | 9.0                  |
| 10     | Baildonit               | 1782      | 510          | 8.9                  |
| 11     | Plansee Tizit           | 1765      | 499          | 8.9                  |
| 12     | Boart Longyear          | 1795      | 506          | 9.0                  |
| 13     | United Hardmetals       | 1786      | 523          | 8.8                  |
| 14     | Teledyne                | 1786      | 514          | 8.9                  |
| 15     | Archived                | 1773      | 515          | 8.8                  |
| 16     | BAM                     | 1793      | 503          | 9.0                  |
|        | Mean Value ± sd         | 1778 ± 13 | 509 ± 7      | 8.9 ± 0.1            |

# **Material B1**

### **Material B2**

| Sample | Doution out             | Hardness      | Crack length | $W_k$                |
|--------|-------------------------|---------------|--------------|----------------------|
| Number | Participant             | HV30          | μm           | MN m <sup>-3/2</sup> |
| 1      | Konrad Friedrichs KG    | 1651          | 411          | 9.5                  |
| 2      | Teledyne                | 1643          | 438          | 9.2                  |
| 3      | Plansee Tizit           | 1628          | 425          | 9.3                  |
| 4      | Archived                | 1602          | 419          | 9.3                  |
| 5      | Archived                | 1639          | 428          | 9.3                  |
| 6      | Archived                | 1608          | 451          | 9.0                  |
| 7      | Kennametal              | 1616          | 429          | 9.2                  |
| 8      | Hughes Christensen      | 1626          | 439          | 9.2                  |
| 9      | United Hardmetals       | 1631          | 439          | 9.2                  |
| 10     | Boart Longyear          | 1624          | 448          | 9.1                  |
| 11     | Universitat Politecnica | 1647          | 450          | 9.1                  |
| 12     | Baildonit               | 1629          | 435          | 9.2                  |
| 13     | Archived                | 1620          | 440          | 9.1                  |
| 14     | BAM                     | 1620          | 436          | 9.2                  |
| 15     | Marshalls               | 1628          | 447          | 9.1                  |
| 16     | Sandvik Hard Materials  | 1608          | 442          | 9.1                  |
|        | Mean Value ± sd         | $1626 \pm 14$ | $436 \pm 11$ | $9.2 \pm 0.1$        |

| Sample | Participant             | Hardness  | Crack length | $W_k$               |
|--------|-------------------------|-----------|--------------|---------------------|
| Number | I.                      | HV30      | μm           | MN m <sup>3/2</sup> |
| 1      | Plansee Tizit           | 1795      | 541          | 8.7                 |
| 2      | Kennametal              | 1853      | 521          | 9.0                 |
| 3      | Baildonit               | 1795      | 528          | 8.8                 |
| 4      | Hughes Christensen      | 1780      | 554          | 8.5                 |
| 5      | Konrad Friedrichs KG    | 1790      | 539          | 8.7                 |
| 6      | Sandvik Hard Materials  | 1808      | 523          | 8.8                 |
| 7      | Universitat Politecnica | 1851      | 544          | 8.8                 |
| 8      | Teledyne                | 1796      | 545          | 8.6                 |
| 9      | Archived                | 1849      | 540          | 8.8                 |
| 10     | United Hardmetals       | 1817      | 532          | 8.8                 |
| 11     | Boart Longyear          | 1823      | 554          | 8.6                 |
| 12     | BAM                     | 1786      | 558          | 8.5                 |
| 13     | Archived                | 1787      | 528          | 8.7                 |
| 14     | Marshalls               | 1806      | 528          | 8.8                 |
|        | Mean Value ± sd         | 1810 ± 25 | 538 ± 12     | $8.7 \pm 0.1$       |

# Material H1

# Material H2

| Sample<br>Number | Participant             | Hardness<br>HV30 | Crack length<br>um | W <sub>k</sub><br>MN m <sup>-3/2</sup> |
|------------------|-------------------------|------------------|--------------------|----------------------------------------|
| 1                | BAM                     | 1600             | 450                | 9.0                                    |
| 2                | Universitat Politecnica | 1605             | 330                | 10.5                                   |
| 3                | Teledyne                | 1597             | 464                | 8.8                                    |
| 4                | Boart Longyear          | 1611             | 446                | 9.0                                    |
| 5                | Hughes Christensen      | 1570             | 436                | 9.0                                    |
| 6                | Sandvik Hard Materials  | 1575             | 420                | 9.2                                    |
| 7                | Archived                | 1613             | 400                | 9.6                                    |
| 8                | Konrad Friedrichs KG    | 1598             | 383                | 9.7                                    |
| 9                | Archived                | 1583             | 415                | 9.3                                    |
| 10               | Plansee Tizit           | 1581             | 408                | 9.4                                    |
| 11               | Kennametal              | 1587             | 428                | 9.2                                    |
| 12               | Marshalls               | 1582             | 409                | 9.4                                    |
| 13               | Archived                | 1612             | 418                | 9.3                                    |
| 14               | United Hardmetals       | 1598             | 441                | 9.1                                    |
| 15               | Baildonit               | 1575             | 430                | 9.1                                    |
|                  | Mean Value ± sd         | $1592 \pm 14$    | $419 \pm 32$       | $9.3 \pm 0.4$                          |

| Sample | Participant             | Hardness    | Crack length | $W_k$                |
|--------|-------------------------|-------------|--------------|----------------------|
| Number | Farticipant             | HV30        | μm           | MN m <sup>-3/2</sup> |
| 1      | Baildonit               | 1370        | 170          | 13.5                 |
| 2      | Kennametal              | 1403        | 194          | 12.8                 |
| 3      | Sandvik Hard Materials  | 1411        | 201          | 12.6                 |
| 4      | Marshalls               | 1375        | 189          | 12.8                 |
| 5      | Konrad Friedrichs KG    | 1351        | 184          | 12.9                 |
| 6      | Teledyne                | 1326        | 185          | 12.7                 |
| 7      | Plansee Tizit           | 1378        | 169          | 13.6                 |
| 8      | Archived                | 1377        | 181          | 13.1                 |
| 9      | Hughes Christensen      | 1388        | 193          | 12.7                 |
| 10     | Archived                | 1387        | 167          | 13.7                 |
| 11     | Boart Longyear          | 1324        | 171          | 13.2                 |
| 12     | BAM                     | 1317        | 155          | 13.8                 |
| 13     | Universitat Politecnica | 1352        | 163          | 13.7                 |
| 14     | United Hardmetals       | 1341        | 163          | 13.6                 |
|        | Mean Value ± sd         | $1364\pm30$ | $178 \pm 14$ | $13.2 \pm 0.4$       |

# **Material H3**

### **Material TCM10**

| Sample | Dortiginant             | Hardness      | Crack length | $W_k$                |
|--------|-------------------------|---------------|--------------|----------------------|
| Number | Faiticipant             | HV30          | μm           | MN m <sup>-3/2</sup> |
| 1      | Archived                | 1676          | 616          | 7.8                  |
| 2      | Baildonit               | 1649          | 609          | 7.8                  |
| 3      | Universitat Politecnica | 1621          | 630          | 7.6                  |
| 4      | Archived                | 1688          | 586          | 8.1                  |
| 5      | Archived                | 1646          | 611          | 7.8                  |
| 6      | Archived                | 1646          | 598          | 7.9                  |
| 7      | Hughes Christensen      | 1621          | 631          | 7.6                  |
| 8      | Boart Longyear          | 1604          | 606          | 7.7                  |
| 9      | Marshalls               | 1608          | 632          | 7.6                  |
| 10     | Teledyne                | 1645          | 645          | 7.6                  |
| 11     | United Hardmetals       | 1648          | 632          | 7.7                  |
| 12     | BAM                     | 1622          | 631          | 7.6                  |
| 13     | Sandvik Hard Materials  | 1623          | 638          | 7.6                  |
| 14     | Plansee Tizit           | 1647          | 620          | 7.8                  |
| 15     | Kennametal              | 1616          | 621          | 7.7                  |
| 16     | Konrad Friedrichs KG    | 1618          | 607          | 7.8                  |
|        | Mean Value ± sd         | $1636 \pm 24$ | 620 ± 16     | $7.7 \pm 0.1$        |

| Sample | Participant            | Hardness  | Crack length | W <sub>k</sub>       |
|--------|------------------------|-----------|--------------|----------------------|
| Number | 1 articipant           | HV30      | μm           | MN m <sup>-3/2</sup> |
| 1      | Kennametal             | 1721      | 449          | 9.3                  |
| 2      | Universitat            | 1784      | 420          | 9.8                  |
| 3      | Archived               | 1765      | 389          | 10.1                 |
| 4      | Archived               | 1758      | 422          | 9.7                  |
| 5      | Hughes Christensen     | 1748      | 442          | 9.5                  |
| 6      | Konrad Friedrichs KG   | 1710      | 444          | 9.3                  |
| 7      | Sandvik Hard Materials | 1704      | 451          | 9.2                  |
| 8      | BAM                    | 1730      | 456          | 9.3                  |
| 9      | Teledyne               | 1693      | 444          | 9.3                  |
| 10     | United Hardmetals      | 1703      | 429          | 9.5                  |
| 11     | Boart Longyear         | 1721      | 453          | 9.3                  |
| 12     | Plansee Tizit          | 1706      | 444          | 9.3                  |
| 13     | Baildonit              | 1718      | 449          | 9.3                  |
| 14     | Archived               | 1728      | 450          | 9.3                  |
| 15     | Marshalls              | 1703      | 449          | 9.3                  |
|        | Mean Value ± sd        | 1726 ± 26 | 439 ± 18     | 9.4 ± 0.3            |

# Material K313

## Material K420

| Sample | Participant          | Hardness      | Crack length | $W_k$                |
|--------|----------------------|---------------|--------------|----------------------|
| Number | 1 articipant         | HV30          | μm           | MN m <sup>-3/2</sup> |
| 1      | BAM                  | 1475          | 340          | 9.9                  |
| 2      | Boart Longyear       | 1491          | 317          | 10.3                 |
| 3      | Teledyne             | 1488          | 338          | 10.0                 |
| 4      | United Hardmetals    | 1480          | 329          | 10.1                 |
| 5      | Politecnica          | 1516          | 307          | 10.6                 |
| 6      | Archived             | 1514          | 243          | 11.9                 |
| 7      | Archived             | 1521          | 299          | 10.7                 |
| 8      | Konrad Friedrichs KG | 1468          | 344          | 9.8                  |
| 9      | Archived             | 1448          | 325          | 10.0                 |
| 10     | Marshalls            | 1482          | 328          | 10.1                 |
| 11     | Materials            | 1491          | 338          | 10.0                 |
| 12     | Kennametal           | 1468          | 341          | 9.9                  |
| 13     | Hughes Christensen   | 1469          | 347          | 9.8                  |
| 14     | Plansee Tizit        | 1478          | 338          | 10.0                 |
| 15     | Baildonit            | 1497          | 315          | 10.4                 |
|        | Mean Value ± sd      | $1486 \pm 20$ | $323 \pm 26$ | $10.2 \pm 0.5$       |

| Sample | Particinant            | Hardness    | Crack length | W <sub>k</sub> |
|--------|------------------------|-------------|--------------|----------------|
| Number | 1 articipant           | HV30        | μm           | $MN m^{-3/2}$  |
| 1      | Plansee Tizit          | 1034        | 0            | N/A            |
| 2      | Marshalls              | 990         | 0            | N/A            |
| 3      | Hughes Christensen     | 1070        | 0            | N/A            |
| 4      | Baildonit              | 1043        | 0            | N/A            |
| 5      | Konrad Friedrichs KG   | 1061        | 0            | N/A            |
| 6      | Archived               | 1016        | 0            | N/A            |
| 7      | Sandvik Hard Materials | 999         | 0            | N/A            |
| 8      | Kennametal             | 1007        | 0            | N/A            |
| 9      | BAM                    | 1052        | 0            | N/A            |
| 10     | Boart Longyear         | 1043        | 0            | N/A            |
| 11     | United Hardmetals      | 1025        | 0            | N/A            |
| 12     | Teledyne               | 999         | 0            | N/A            |
|        | Mean Value ± sd        | $1028\pm26$ |              |                |

# Material K3560

### Material K3560

| Sample | Dortiginant             | Hardness       | Crack length | W <sub>k</sub>       |
|--------|-------------------------|----------------|--------------|----------------------|
| Number | Participant             | HV100          | μm           | MN m <sup>-3/2</sup> |
| 1      | Archived                | 1009           | 60           | 35.7                 |
| 2      | Universitat Politecnica | 1005           | 134          | 23.8                 |
| 3      | Archived                | 1012           | 185          | 20.3                 |
| 4      | BAM                     | 995            | 145          | 22.7                 |
| 5      | Boart Longyear          | 994            | 170          | 21.0                 |
| 6      | United Hardmetals       | 1000           | 311          | 15.6                 |
| 7      | Teledyne                | 992            | 181          | 20.3                 |
| 8      | Kennametal              | 987            | 32           | 48.0                 |
| 9      | Sandvik Hard Materials  | 990            | 149          | 22.4                 |
| 10     | Archived                | 988            | 185          | 20.1                 |
| 11     | Marshalls               | 992            | 171          | 20.9                 |
| 12     | Hughes Christensen      | 995            | 246          | 17.5                 |
| 13     | Konrad Friedrichs KG    | 997            | 107          | 26.6                 |
| 14     | Plansee Tizit           | 994            | 290          | 16.1                 |
| 15     | Baildonit               | 996            | 136          | 23.5                 |
|        | Mean Value ± sd         | <b>996 ± 7</b> | $167 \pm 75$ | $21.2 \pm 8.3$       |

Table B2

# CERMeP

# RESULTS

|        | NDL HV20 | Total crack length, µm     |                                 |          | Total crack length, µm        |                |             |  |
|--------|----------|----------------------------|---------------------------------|----------|-------------------------------|----------------|-------------|--|
| Sample | indent   | HV30 indents made into NPL |                                 |          | HV30 indent made into surface |                |             |  |
| code   |          | F                          | polished surfa                  | ice      | polis                         | hed by partic  | ipant       |  |
|        | Indent 1 | Indent 1                   | Indent 2                        | Indent 3 | Indent 1                      | Indent 2       | Indent 3    |  |
| B1     | 498      | 490                        | 504                             | 498      | 398                           | 406            | 398         |  |
| B2     | 438      | 438                        | 430                             | 430      | 330                           | 296            | 246         |  |
| H1     | 544      | 518                        | 550                             | 542      | 378                           | 388            | 378         |  |
| H2     | 436      | 424                        | 412                             | 420      | 388                           | 382            | 384         |  |
| Н3     | 186      | 156                        | 158                             | 186      | 156                           | 150            | 156         |  |
| TCM 10 | 636      | 638                        | 640                             | 634      | 526                           | 538            | 490         |  |
| K313   | 442      | 424                        | 448                             | 456      | 428                           | 394            | 412         |  |
| K420   | 328      | 318                        | 326                             | 322      | 296                           | 296            | 294         |  |
|        | NPL HV30 | HV100 in                   | HV100 indent crack lengths made |          |                               | lent crack ler | gths made   |  |
|        | indents  | in N                       | in NPL polished surface         |          |                               | polished by p  | participant |  |
| K3560  | 28       | -                          | -                               | -        | -                             | -              | -           |  |

# CERMeP Palmqvist Crack Length Measurements

### **Comments or observations here**

- On the NPL polished surface, the total crack length is almost the same from your and our indent.
- Concerning the surface polished at CERMeP, the total crack length is always smaller than on the NPL polished surface. It is sometimes due to an indent which generates 4 cracks smaller than the cracks of the other indents of the same sample.
- To check the reproducibility of our measurements, other indents have been performed on 3 samples. (Results are presented in Annex.)

### **Details of in-house polishing routine**

- Hot embedding in a glass fibre resin.
- Polishing in 5 steps:
  - Diamond tray of 75 µm (with a metallic binder)
    - 3 min at 2 daN, 300 rot/min.
  - Diamond tray of 30  $\mu$ m (with an organic binder)
    - 7 min at 6 daN, 350 rot/min.
  - Diamond tray of 10 μm (with an organic binder) 7 min at 7 daN, 350 rot/min.
  - Finishing on a cloth with diamond suspension (3 μm) 7 min at 4 daN, 350 rot/min.
  - Finishing on a cloth with diamond suspension (1  $\mu$ m)
    - 7 min at 4 daN, 350 rot/min.

Before making the new indents, the resin was taken off. A saw-cut was made in the resin and the sample was recovered.

### Details of measurement of crack lengths.

The crack lengths have been measured with an optical microscope. The magnification used was  $\times$ 500. The objectives contain a graduated rule to be able to measure the crack length. A conversion table enabled the crack length to be calculated for the magnification used. Each crack was measured just one time.

Table B3

# Plansee

# RESULTS

|        | NDI           | Total Crack Length, µm      |                |          | Total Crack Length, µm          |                |           |
|--------|---------------|-----------------------------|----------------|----------|---------------------------------|----------------|-----------|
| Sample | HV30 Indent   | HV30 in                     | dents made i   | nto NPL  | HV30 ind                        | ents made int  | o surface |
| Code   | 11 v 50 maent | ро                          | olished surfac | ce       | polisł                          | ned by partici | pant      |
|        | Indent 1      | Indent 1                    | Indent 2       | Indent 3 | Indent 1                        | Indent 2       | Indent 3  |
| B1     | 499           | 493                         | 492            | 501      | 521                             | 507            | 494       |
| B2     | 424           | 432                         | 424            | 428      | 395                             | 383            | 393       |
| H1     | 541           | 529                         | 519            | 537      | 522                             | 513            | 515       |
| H2     | 446           | 389                         | 409            | 413      | 371                             | 373            | 375       |
| H3     | 160           | 143                         | 160            | 150      | 148                             | 160            | 150       |
| TCM 10 | 640           | 640                         | 638            | 636      | 622                             | 636            | 648       |
| K313   | 450           | 430                         | 417            | 458      | 464                             | 478            | 460       |
| K420   | 345           | 322                         | 310            | 310      | 340                             | 349            | 342       |
|        | NPL HV100     | HV125 indents made into NPL |                |          | HV125 indents made into surface |                |           |
|        | indents       | polished surface            |                |          | polisł                          | ned by partici | pant      |
| K3560  | 279           | 288                         | 296            | 332      | 286                             | 320            | 207       |

### PLANSEE Palmqvist Crack Length Measurements

### **Comments or observations**

HV100 is not possible with our Hardness tester. We used instead HV125.

Problem with HV125 indents.

Crack length on sample K3560 not well distributed. At one corner there was no crack or a significant short crack. In this case the total crack length was reduced. The same problem occurred with tougher grades (H3) at HV30.

In these cases the higher value in total crack length seems more reliable.

Additionally, we observed some smaller cracks around the K3560 indents. These are not included in our measurement.

We think that the Palmqvist toughness is not very reliable for such tough grades.

### Details of the in-house polishing routine

After grinding with a fine (10  $\mu$ m) diamond grinding wheel the samples were polished with diamond polishing paste (Struers DP-P 3  $\mu$ m) – time: 4 minutes. After this, the samples were annealed at 800 °C/2 hours in vacuum. In some cases we observed an annealing structure on the surface and repolished slightly for 1 minute.

### **Details of measurement of the crack lengths**

We measure the crack lengths in an optical microscope (magnification 500). We see the Palmqvistmethod as a coarse approximation therefore we did not work out a better method of crack length measurement (SEM etc).

For precise toughness measurements we use the  $K_{IC}$ -method described by L Sigl (1985) with modified crack initiation.

# PLANSEE SEPB Results

| Material     | Code | Fracture Toughness<br>K <sub>IC</sub> MN m <sup>-3/2</sup> | Standard Deviation |
|--------------|------|------------------------------------------------------------|--------------------|
|              | 1    | 8.90                                                       |                    |
| D1           | 2    | 8.95                                                       |                    |
| BI           | 3    | 9.15                                                       |                    |
|              | 4    | 9.18                                                       |                    |
| Mean         |      | 9.05                                                       | 0.14               |
|              | 1    | 8.77                                                       |                    |
| DJ           | 2    | 9.04                                                       |                    |
| B2           | 3    | 8.98                                                       |                    |
|              | 4    | 8.97                                                       |                    |
| Mean         |      | 8.94                                                       | 0.12               |
|              | 1    | 8.76                                                       |                    |
| TT1          | 2    | 8.40                                                       |                    |
| пі           | 3    | 8.66                                                       |                    |
|              | 4    | 8.69                                                       |                    |
| Mean         |      | 8.63                                                       | 0.16               |
|              | 1    | 9.47                                                       |                    |
| 112          | 2    | 9.98                                                       |                    |
| H2           | 3    | 9.66                                                       |                    |
|              | 4    | 9.86                                                       |                    |
| Mean         |      | 9.74                                                       | 0.22               |
|              | 1    | 12.04                                                      |                    |
| 112          | 2    | 12.31                                                      |                    |
| ПЭ           | 3    | 12.01                                                      |                    |
|              | 4    | 12.12                                                      |                    |
| Mean         |      | 12.12                                                      | 0.14               |
|              | 1    | 9.23                                                       |                    |
| V212         | 2    | 9.47                                                       |                    |
| K315         | 3    | 9.43                                                       |                    |
|              | 4    | 9.45                                                       |                    |
| Mean         |      | 9.40                                                       | 0.11               |
|              | 1    | 11.37                                                      |                    |
| V 120        | 2    | 11.45                                                      |                    |
| <b>K</b> 420 | 3    | 11.42                                                      |                    |
|              | 4    | 11.42                                                      |                    |
| Mean         |      | 11.41                                                      | 0.03               |
|              | 1    | 18.62                                                      |                    |
| K3560        | 2    | 18.77                                                      |                    |
|              | 3    | 18.67                                                      |                    |
| Mean         |      | 18.69                                                      | 0.08               |

Table B4

Teledyne

# RESULTS

|        | NDI           | Total Crack Length, µm      |                |          | Total Crack Length, µm          |                |          |
|--------|---------------|-----------------------------|----------------|----------|---------------------------------|----------------|----------|
| Sample | HV30 Indent   | HV30 in                     | dents made i   | nto NPL  | HV30 indents made into surface  |                |          |
| Code   | 11 v 50 maent | ро                          | olished surfac | ce       | polisł                          | ned by partici | pant     |
|        | Indent 1      | Indent 1                    | Indent 2       | Indent 3 | Indent 1                        | Indent 2       | Indent 3 |
| B1     | 512           | 508                         | 516            | 512      | 540                             | 536            | 544      |
| B2     | 440           | 436                         | 444            | 452      | 508                             | 488            | 496      |
| H1     | 556           | 548                         | 556            | 560      | 572                             | 568            | 568      |
| H2     | 496           | 436                         | 440            | 452      | 512                             | 508            | 512      |
| H3     | 200           | 188                         | 188            | 192      | 300                             | 276            | 260      |
| TCM 10 | 648           | 620                         | 624            | 608      | 604                             | 596            | 608      |
| K313   | 440           | 448                         | 464            | 440      | 544                             | 544            | 504      |
| K420   | 348           | 352                         | 348            | 348      | 388                             | 368            | 360      |
|        | NPL HV100     | HV125 indents made into NPL |                |          | HV125 indents made into surface |                |          |
|        | indents       | polished surface            |                |          | polisł                          | ned by partici | pant     |
| K3560  | 276           | 248                         | 280            | 244      | 248                             | 272            | 328      |

### TELEDYNE Palmqvist Crack Length Measurements

#### **Comments or observations**

### Details of the in-house polishing routine

The samples were prepared for polishing by hot mounting in resin. Each sample was placed in a clamped, levelling holder. The samples were then ground and polished as follows:

 ${\sim}\!45$  sec on a Struers 20  $\mu m$  diamond grinding disc.

 $2.5\ \text{min}$  on an allegro disc with Struers 6  $\mu\text{m}$  diamond suspension.

5 min on a silk polishing pad with Struers 6 µm diamond suspension.

5 min on a silk polishing pad with Struers 1 µm diamond suspension.

After polishing the samples surfaces were suitable for metallographic examination.

The samples were then removed from the mounting material and cleaned with alcohol. They were then placed in a tube furnace and annealed for 2 hours at 850 °C in hydrogen to relieve surface stresses. The samples were cooled in an argon atmosphere to room temperature and then removed to testing.

## **Details of measurement of the crack lengths**

*i.e. imaging technique (microscope, electron microscope) magnification, image analyser.* 

The sample crack lengths were measured on an optical microscope with a Boeckler VIA-150 video measuring system at 500× magnification.

#### TELEDYNE – Short Rod Data VAMAS FRACTURE TOUGHNESS ROUND ROBIN TEST RESULTS: ASTM-B09.06 TASK FORCE ON FRACTURE TOUGHNESS OF CEMENTED CARBIDES

| Material | Sample | Diameter | Length | Slot Depth            | Cord Angle | Slot Thickness | K (Max) | Correction | C                |
|----------|--------|----------|--------|-----------------------|------------|----------------|---------|------------|------------------|
| Code     | No     | B (in)   | W (in) | $(\mathbf{a}_{0})$ in | θ (deg)    | τ (in)         | MPa     | Factor p   | Comments         |
| H1       | 4492   | .4993    | .7427  | .265                  | 58         | .015           | 7.340   | No data    | Bad graph        |
| H1       | 4493   | .5004    | .7462  | .250                  | 58         | .015           | 7.540   | 037        |                  |
| H1       | 4496   | .5005    | .7456  | .252                  | 58         | .015           | 11.03   | 43         |                  |
| H1       | 4497   | .5027    | .7498  | .251                  | 58         | .015           | 11.03   | 103        |                  |
| H1       | 4498   | .5022    | .7502  | .248                  | 58         | .015           | No data | No data    | Diameter too big |
| H1       | 4499   | .5028    | .7502  | .255                  | 58         | .015           | No data | No data    | Diameter too big |
| H2       | 4555   | .5027    | .7452  | .250                  | 58         | .015           | 11.51   | No data    | Bad graph        |
| H2       | 4562   | .5014    | .7423  | .251                  | 59         | .015           | 11.68   | No data    | Bad graph        |
| H2       | 4563   | .5045    | .7504  | .251                  | 58         | .015           | 12.33   | 113        |                  |
| H2       | 4564   | .5008    | .7419  | .251                  | 58         | .015           | 14.07   | 259        |                  |
| H2       | 4565   | .5019    | .7433  | .258                  | 58         | .015           | 11.53   | 266        |                  |
| H2       | 4554   | .5004    | .7396  | .260                  | 58         | .015           | 10.97   | 270        |                  |
| H3       | 4732   | .5044    | .7453  | .253                  | 58         | .015           | No data | No data    | Diameter too big |
| Н3       | 4738   | .5078    | .7509  | .265                  | 58         | .015           | No data | No data    | Diameter too big |
| Н3       | 4739   | .5058    | .7467  | .268                  | 59         | .015           | No data | No data    | Diameter too big |
| H3       | 4741   | .5054    | .7500  | .259                  | 58         | .015           | No data | No data    | Diameter too big |
| Н3       | 4742   | .5068    | .7520  | .247                  | 58         | .015           | No data | No data    | Diameter too big |
| H3       | 4744   | .5047    | .7463  | .252                  | 58         | .015           | No data | No data    | Diameter too big |
| K313     | 5460   | .5001    | .7507  | .252                  | 57         | .015           | 8.880   | No data    | Bad graph        |
| K313     | 5461   | .4997    | .7510  | .251                  | 58         | .015           | 8.630   | 075        |                  |
| K313     | 5463   | .5000    | .7505  | .253                  | 58         | .015           | 9.090   | 093        |                  |
| K313     | 5465   | .5000    | .7507  | .250                  | 58         | .015           | 8.990   | 045        |                  |
| K313     | 5466   | .5000    | .7510  | .254                  | 58         | .015           | 10.04   | +.021      |                  |
| K313     | 5467   | .5003    | .7505  | .252                  | 58         | .015           | 9.070   | 074        |                  |
| K420     | 5603   | .4998    | .7498  | .250                  | 58         | .015           | 10.69   | 033        |                  |
| K420     | 5618   | .5002    | .7498  | .250                  | 58         | .015           | 10.69   | 037        |                  |
| K420     | 5619   | .4999    | .7506  | .248                  | 58         | .015           | 10.86   | +.018      |                  |
| K420     | 5620   | .5001    | .7515  | .254                  | 58         | .015           | 11.07   | 088        |                  |
| K420     | 5623   | .5000    | .7499  | .249                  | 58         | .015           | 10.57   | 041        |                  |
| K420     | 5624   | .5000    | .7498  | .251                  | 58         | .015           | 10.83   | 076        |                  |
| K3560    | 5722   | .4999    | .7500  | .255                  | 59         | .015           | 17.80   | 060        |                  |
| K3560    | 5724   | .4999    | .7504  | .247                  | 58         | .015           | 18.10   | 098        |                  |
| K3560    | 5726   | .5000    | .7504  | .251                  | 58         | .015           | 18.30   | No data    | Bad graph        |
| K3560    | 5728   | .4999    | .7505  | .260                  | 57         | .015           | 16.31   | 040        |                  |
| K3560    | 5729   | .4999    | .7511  | .259                  | 57         | .015           | 17.16   | 035        |                  |
| K3560    | 5730   | .5000    | .7507  | .249                  | 58         | .015           | 18.11   | +.036      |                  |

Table B5

**Hughes Christensen** 

RESULTS

### HUGHES CHRISTENSEN Palmqvist Crack Length Measurements

|        | Total Crack Length (µm) |               |                |             |               |                        |          |  |  |
|--------|-------------------------|---------------|----------------|-------------|---------------|------------------------|----------|--|--|
| Sample | NPL HV30                | HCC H         | IV30 on NPL    | polish      | HCC H         | HCC HV30 on HCC polish |          |  |  |
| Code   | Indent                  | Indent 1      | Indent 2       | Indent 3    | Indent 1      | Indent 2               | Indent 3 |  |  |
| B1     | 492                     | 496           | 502            | 511         | 503           | 498                    | 493      |  |  |
| B2     | 437                     | 432           | 464            | 436         | 415           | 415                    | 429      |  |  |
| H1*    | 539                     | 539           | 528            | 533         | 542           | 536                    | 530      |  |  |
| H2*    | 460                     | 437           | 426            | 426         | 403           | 406                    | 426      |  |  |
| H3*    | 186                     | 189           | 178            | 183         | 172           | 192                    | 206      |  |  |
| TCM10  | 621                     | 618           | 618            | 598         | 584           | 553                    | 499      |  |  |
| K313*  | 443                     | 457           | 460            | 451         | 432           | 426                    | 378      |  |  |
| K420*  | 353                     | 310           | 322            | 299         | 257           | 305                    | 231      |  |  |
|        | NPL HV30                | HCC H         | V100 on NPI    | L polish    | HCC H         | V100 on HC             | C polish |  |  |
| K3560* | 121                     | 248           | 192            | 228         | 228           | 284                    | 257      |  |  |
|        | * grades for w          | hich correspo | onding short i | od (SR) sam | ples were sup | plied.                 |          |  |  |

#### **Comments or observations**

Wilson Tukon tester used to apply 30 Kgf test load. Wilson Rockwell tester used to apply 100 Kgf load.

Note: Sample B1 has two "bad" indentations which were not used. See sample container for diagram.

#### Details of the in-house polishing routine

As received pieces were polished by hand on a 40  $\mu$ m diamond "dimple" pad. This was followed by 30  $\mu$ m diamond lapping film, 3  $\mu$ m diamond lapping film, and 0.5  $\mu$ m film.

### **Details of measurement of the crack lengths**

*i.e. imaging technique (microscope, electron microscope) magnification, image analyser.* 

Cracks were measured using an eyepiece filar on our Tukon tester. Stage micrometer made by Buehler was used to calibrate the eyepiece filar and  $32 \times$  objective.

Note: Diagonal measurements for Vickers hardness values were done using image analysis system on Buehler microhardness tester.

(Did not think of using this until after crack lengths were already done by the other method.)

# **HUGHES CHRISTENSEN**

# **Additional Information**

| Sample | Average         | Vickers | Palmqvist                       |  |  |  |  |  |
|--------|-----------------|---------|---------------------------------|--|--|--|--|--|
| Code   | Total crack, µm | HV30    | $K_{IC}$ , MN m <sup>-3/2</sup> |  |  |  |  |  |
| B1     | 499             | 1779    | 9.0                             |  |  |  |  |  |
| B2     | 432             | 1574    | 9.1                             |  |  |  |  |  |
| H1     | 535             | 1741    | 8.6                             |  |  |  |  |  |
| H2     | 426             | 1548    | 9.1                             |  |  |  |  |  |
| H3     | 187             | 1290    | 12.5                            |  |  |  |  |  |
| TCM10  | 584             | 1580    | 7.8                             |  |  |  |  |  |
| K313   | 435             | 1767    | 9.6                             |  |  |  |  |  |
| K420   | 297             | 1568    | 10.9                            |  |  |  |  |  |
| HV100  |                 |         |                                 |  |  |  |  |  |
|        | 240             | 993     | 17.7                            |  |  |  |  |  |

| Note: K <sub>IC</sub> calculated from the following formula |
|-------------------------------------------------------------|
|                                                             |
| $K_{IC} = W_K = A (HV)^{1/2} W_G^{1/2}$                     |
|                                                             |
| A = 0.0028                                                  |
| $HV = Vickers hardness value in N/mm^2$                     |
| $W_G = P/T$ in N/mm                                         |
| P = Load in Newtons                                         |
| T = Total crack length in mm                                |

# **HUGHES CHRISTENSEN**

# **Vickers Hardness Indentations**

|        |               |     | Indenta    |     |     |            |     |     |         |     |
|--------|---------------|-----|------------|-----|-----|------------|-----|-----|---------|-----|
| Sample | 1             | 2   | 3          | 4   | 5   | 6          | 7   | Δνε | Avorago |     |
| Sample | NPL<br>indent |     | NPL Polish | 1   |     | HCC Polish |     |     | Average |     |
| B1     | 177           | 173 | 177        | 177 | 178 | 179        | 180 | μm  | HV30    | 178 |
|        | 176           | 174 | 176        | 176 | 177 | 177        | 179 | 177 | 1778    |     |
| B2     | 185           | 188 | 190        | 188 | 188 | 188        | 190 | μm  | HV30    | 163 |
|        | 184           | 188 | 190        | 188 | 187 | 190        | 188 | 188 | 1574    |     |
| H1     | 178           | 178 | 176        | 178 | 178 | 180        | 179 | μm  | HV30    | 173 |
|        | 180           | 180 | 177        | 178 | 180 | 181        | 179 | 179 | 1741    |     |
| H2     | 190           | 190 | 187        | 190 | 191 | 190        | 192 | μm  | HV30    | 154 |
|        | 189           | 187 | 187        | 190 | 190 | 191        | 190 | 190 | 1548    |     |
| Н3     | 207           | 206 | 208        | 207 | 208 | 208        | 210 | μm  | HV30    | 130 |
|        | 206           | 206 | 208        | 208 | 208 | 210        | 207 | 208 | 1290    |     |
| TCM10  | 187           | 188 | 187        | 188 | 188 | 188        | 185 | μm  | HV30    | 159 |
|        | 187           | 189 | 189        | 189 | 189 | 188        | 185 | 188 | 1580    |     |
| K313   | 181           | 182 | 184        | 180 | 173 | 172        | 168 | μm  | HV30    | 169 |
|        | 181           | 183 | 181        | 179 | 175 | 174        | 171 | 177 | 1767    |     |
| K420   | 197           | 193 | 194        | 197 | 170 | 182        | 187 | μm  | HV30    | 143 |
|        | 197           | 197 | 190        | 199 | 166 | 185        | 183 | 188 | 1568    |     |
| K3560  | 243           | 432 | 429        | 427 | 427 | 438        | 437 | μm  | HV100   | 978 |
|        | 243           | 437 | 429        | 430 | 433 | 435        | 430 | 432 | 993     |     |
|        |               |     |            |     | T   |            |     | μm  | HV30    |     |
|        |               |     |            |     |     |            |     | 239 | 978     |     |

| Notes: | NPL Indent = HCC measurement of NPL indentation on NPL polished side. |
|--------|-----------------------------------------------------------------------|
|        | NPL Polish = HCC measurement of HCC indentation on NPL polished side. |
|        | HCC Polish = HCC measurement of HCC indentation on HCC polished side. |

| NPL indent | NPL polish | HCC polish |
|------------|------------|------------|
| 1785       | 1806       | 1749       |
| 1634       | 1563       | 1565       |
| 1736       | 1759       | 1726       |
| 1549       | 1565       | 1530       |
| 1304       | 1296       | 1279       |
| 1591       | 1568       | 1588       |
| 1698       | 1688       | 1876       |
| 1433       | 1463       | 1739       |
| 978        | 1000       | 987        |

|         |                   |     |        |       |       |       |                 |        |                   |       | Hardness |          |       |       |        |
|---------|-------------------|-----|--------|-------|-------|-------|-----------------|--------|-------------------|-------|----------|----------|-------|-------|--------|
|         | Density           | Hc  | Sigma* | Def   | Р     | Т     | K <sub>DL</sub> | р      | K <sub>ICSR</sub> | Cc    | Hra      |          |       |       |        |
| Number  | g/cm <sup>3</sup> | Oe  | emu/g  | emu/g | in    | in    | MPa √m          | factor | MPa √m            | Dim   | 1        | 2        | 3     | 4     | Ave    |
| 5414    | 12.3780           | 140 | 13.00  | 12.36 | 0.750 | 0.500 | 11.18           | 0.000  | 10.36             | 0.927 | 91.45    | 91.35    | 91.35 | 91.50 | 91.4   |
| 5615    | 12.3763           | 140 | 13.09  | 12.45 | 0.749 | 0.500 | 11.28           | -0.025 | 10.24             | 0.931 | 91.35    | 91.35    | 91.40 | 91.45 | 91.4   |
| 5616    | 12.3774           | 138 | 13.12  | 12.48 | 0.749 | 0.500 | 10.99           | -0.070 | 9.68              | 0.948 | 91.30    | 91.40    | 91.40 | 91.30 | 91.4   |
| 5617    | 12.3770           | 139 | 13.14  | 12.50 | 0.749 | 0.500 | 11.16           | -0.037 | 10.21             | 0.950 | 91.35    | 91.35    | 91.25 | 91.35 | 91.3   |
| 5621    | 12.3737           | 139 | 13.09  | 12.45 | 0.750 | 0.500 | 11.06           | -0.019 | 10.38             | 0.957 | 91.40    | 91.50    | 91.45 | 91.35 | 91.5   |
|         |                   | •   |        |       | •     | -     |                 |        |                   | •     |          |          | •     |       |        |
| Average | 12.38             | 139 |        |       |       |       | 11.13           |        | 10.18             |       |          |          |       |       | 91.4   |
| Std Dev | 0.002             | 1   |        |       |       |       | 0.11            |        | 0.29              |       |          |          |       |       | 0.1    |
| 95% Cl  | 0.002             | 1   |        |       |       |       | 0.14            |        | 0.35              |       |          |          |       |       | 0.1    |
| Max     | 12.38             | 140 |        |       |       |       | 11.28           |        | 10.38             |       |          |          |       |       | 91.475 |
| Min     | 12.37             | 138 |        |       |       |       | 10.99           |        | 9.68              |       |          |          |       |       | 91.3   |
| Range   | 0.004             | 2   |        |       |       |       | 0.29            |        | 0.70              |       | <u> </u> | <u> </u> |       |       | 0.2    |
| Count   | 5                 | 5   |        |       |       |       | 5               |        | 5                 |       |          |          |       |       | 5      |

# VK420 - Short Rod Results

| Grade: VK3 | 560                       |      |       |       |       |                 |        |                   |        |       |      |      |      |      |
|------------|---------------------------|------|-------|-------|-------|-----------------|--------|-------------------|--------|-------|------|------|------|------|
|            | Density Hc Sigma* Def P T |      |       |       |       | K <sub>DL</sub> | р      | K <sub>ICSR</sub> | Cc     | Hra   |      |      |      |      |
| Number     | g/cm <sup>3</sup>         | Oe   | emu/g | emu/g | in    | in              | MPa √m | factor            | MPa $$ | Dim   | 1    | 2    | 3    | Ave  |
| 5744       | 14.3714                   | 61.3 | 14.37 | 13.67 | 0.749 | 0.500           | 18.51  | -0.050            | 17.09  | 0.972 | 85.8 | 86.0 | 85.8 | 85.9 |
| 5746       | 14.3808                   | 61.7 | 14.43 | 13.73 | 0.749 | 0.500           | 18.27  | -0.038            | 16.99  | 0.967 | 85.8 | 86.0 | 86.1 | 86.0 |
| 5743       | 14.3780                   | 61.7 | 14.38 | 13.68 | 0.749 | 0.500           | 18.49  | 0.047             | 18.75  | 0.969 | 85.7 | 85.7 | 85.6 | 85.7 |
| 5751       | 14.3742                   | 61.4 | 14.41 | 13.71 | 0.749 | 0.500           | 18.47  | -0.012            | 17.73  | 0.972 | 86.0 | 86.2 | 85.9 | 86.0 |
| 5740       | 14.3749                   | 61.5 | 14.43 | 13.73 | 0.749 | 0.500           | 18.10  | -0.015            | 16.43  | 0.922 | 85.9 | 86.0 | 85.9 | 85.9 |
| 5741       | 14.3783                   | 61.5 | 14.39 | 13.69 | 0.750 | 0.500           | 18.20  | -0.036            | 17.06  | 0.972 | 85.8 | 86.0 | 85.9 | 85.9 |
|            | •                         |      |       | •     | •     | •               | •      |                   |        | •     |      |      |      |      |
| Average    | 14.38                     | 62   |       |       |       |                 | 18.34  |                   | 17.34  |       |      |      |      | 85.9 |
| Std Dev    | 0.00                      | 0    |       |       |       |                 | 0.17   |                   | 0.80   |       |      |      |      | 0.1  |
| 95% Cl     | 0.00                      | 0    |       |       |       |                 | 0.18   |                   | 0.84   |       |      |      |      | 0.1  |
| Max        | 14.38                     | 61.7 |       |       |       |                 | 18.51  |                   | 18.75  |       |      |      |      | 86.0 |
| Min        | 14.37                     | 61.3 |       |       |       |                 | 18.10  |                   | 16.43  |       |      |      |      | 85.7 |
| Range      | 0.01                      | 0.4  |       |       |       |                 | 0.41   |                   | 2.32   |       |      |      |      | 0.4  |
| Count      | 6                         | 6    |       |       |       |                 | 6      |                   | 6      |       |      |      |      | 6    |

VK3560 - Short Rod Results

| Grade: VK313 |                   |       |        |       |       |       |                 |        |                          |       |       |       |       |       |                                         |
|--------------|-------------------|-------|--------|-------|-------|-------|-----------------|--------|--------------------------|-------|-------|-------|-------|-------|-----------------------------------------|
|              | Density           | Hc    | Sigma* | Def   | Р     | Т     | K <sub>DL</sub> | р      | <b>K</b> <sub>ICSR</sub> | Cc    | Hra   |       |       |       |                                         |
| Number       | g/cm <sup>3</sup> | Oe    | emu/g  | emu/g | in    | in    | MPa √m          | factor | MPa √m                   | Dim   | 1     | 2     | 3     | 4     | Ave                                     |
| 5474         | 14.8066           | 299.2 | 9.39   | 8.92  | 0.750 | 0.500 | 9.60            | ?      | ?                        | 0.967 | 92.80 | 92.70 | 92.70 | 92.70 | 92.7                                    |
| 5464         | 14.8052           | 299.9 | 9.41   | 8.94  | 0.750 | 0.500 | 9.50            | -0.048 | 8.37                     | 0.925 | 92.75 | 92.65 | 92.75 | 92.75 | 92.7                                    |
| 5475         | 14.8087           | 297.3 | 9.39   | 8.92  | 0.750 | 0.499 | 9.65            | 0.043  | 9.61                     | 0.955 | 92.80 | 92.60 | 92.65 | 92.75 | 92.7                                    |
| 5470         | 14.8017           | 299.5 | 9.40   | 8.93  | 0.750 | 0.500 | 9.42            | -0.071 | 8.26                     | 0.944 | 92.75 | 92.70 | 92.80 | 92.75 | 92.8                                    |
| 5469         | 14.8106           | 297,8 | 9.38   | 8.91  | 0.750 | 0.499 | 9.50            | -0.068 | 8.16                     | 0.921 | 92.65 | 92.70 | 92.75 | 92.85 | 92.7                                    |
| 5478         | 14.8111           | 300.1 | 9.42   | 8.95  | 0.749 | 0.500 | 9.40            | 0.000  | 8.61                     | 0.916 | 92.80 | 92.90 | 92.75 | 92.85 | 92.8                                    |
|              |                   |       |        | •     | •     |       |                 |        |                          | •     | •     | •     |       |       |                                         |
| Average      | 14.81             | 299   |        |       |       |       | 9.51            |        | 8 60                     |       |       |       |       |       | 92.7                                    |
| Guip         | 0.00              | 1     | -      |       |       |       | 9.51            |        | 0.00                     |       |       |       |       |       | , , , , , , , , , , , , , , , , , , , , |
| Std Dev      | 0.00              | 1     |        |       |       |       | 0.10            |        | 0.59                     |       |       |       |       |       | 0.0                                     |
| 95% Cl       | 0.00              | 1     |        |       |       |       | 0.10            |        | 0.73                     |       |       |       |       |       | 0.0                                     |
| Max          | 14.81             | 300.1 |        |       |       |       | 9.65            |        | 9.61                     |       |       |       |       |       | 92.8                                    |
| Min          | 14.80             | 297.3 |        |       |       |       | 9.40            |        | 8.16                     |       |       |       |       |       | 92.7                                    |
| Range        | 0.01              | 2.8   |        |       |       |       | 0.25            |        | 1.45                     |       |       |       |       |       | 0.1                                     |
| Count        | 6                 | 6     |        |       |       |       | 6               |        | 5                        |       |       |       |       |       | 6                                       |

# VK313 - Short Rod Results
| Grade: V | rade: VH1         |       |        |       |       |       |                 |        |                   |       |       |       |       |       |        |
|----------|-------------------|-------|--------|-------|-------|-------|-----------------|--------|-------------------|-------|-------|-------|-------|-------|--------|
|          | Density           | Hc    | Sigma* | Def   | Р     | Т     | K <sub>DL</sub> | р      | K <sub>ICSR</sub> | Cc    |       |       | Hra   |       |        |
| Number   | g/cm <sup>3</sup> | Oe    | emu/g  | emu/g | in    | in    | MPa √m          | factor | MPa √m            | Dim   | 1     | 2     | 3     | 4     | Ave    |
| 4515     | 14.7797           | 390.9 | 8.61   | 8.17  | 0.747 | 0.499 | 8.60            | -0.067 | 7.64              | 0.952 | 93.30 | 93.35 | 93.35 | 93.40 | 93.4   |
| 4514     | 14.7746           | 387.4 | 8.69   | 8.25  | 0.743 | 0.499 | 8.25            | -0.059 | 7.48              | 0.963 | 93.90 | 93.35 | 93.55 | 93.70 | 93.6   |
| 4494     | 14.7714           | 388.1 | 8.65   | 8.21  | 0.750 | 0.499 | 8.63            | -0.132 | 7.21              | 0.962 | 92.80 | 93.20 | 93.25 |       | 93.1   |
| 4513     | 14.7709           | 389.5 | 8.64   | 8.20  | 0.750 | 0.500 | 8.41            | 0.000  | 7.96              | 0.946 | 93.40 | 93.20 | 93.10 | 93.60 | 93.3   |
| 4512     | 14.7774           | 391.6 | 8.63   | 8.19  | 0.741 | 0.498 | 8.41            | -0.118 | 7.21              | 0.972 | 92.65 | 93.00 | 93.25 | 93.30 | 93.1   |
|          |                   |       |        | •     |       | -     |                 |        |                   | •     |       |       |       | •     |        |
| Average  | 14.77             | 390   |        |       |       |       | 8.46            |        | 7.50              |       |       |       |       |       | 93.3   |
| Std Dev  | 0.00              | 2     |        |       |       |       | 0.16            |        | 0.32              |       |       |       |       |       | 0.2    |
| 95% Cl   | 0.00              | 2     |        |       |       |       | 0.19            |        | 0.39              |       |       |       |       |       | 0.3    |
| Max      | 14.78             | 391.6 |        |       |       |       | 8.63            |        | 7.96              |       |       |       |       |       | 93.625 |
| Min      | 14.77             | 387.4 |        |       |       |       | 8.25            |        | 7.21              |       |       |       |       |       | 93.1   |
| Range    | 0.01              | 4.2   |        |       |       |       | 0.38            |        | 0.75              |       |       |       |       |       | 0.6    |
| Count    | 5                 | 5     |        |       |       |       | 5               |        | 5                 |       |       |       |       |       | 5      |

VH1 - Short Rod Results

| VH2 | - Short Rod Results |  |
|-----|---------------------|--|
|-----|---------------------|--|

|          | Short Rods        |       |        |       |       |       |                 |        |                   |      |       |       |       |       |       |        |
|----------|-------------------|-------|--------|-------|-------|-------|-----------------|--------|-------------------|------|-------|-------|-------|-------|-------|--------|
| Grade: V | VH2               |       |        |       |       |       |                 |        |                   |      |       |       |       |       |       |        |
|          | Density           | Нс    | Sigma* | Def   | Р     | Т     | K <sub>DL</sub> | р      | K <sub>ICSF</sub> | ł    | Cc    | Hra   |       |       |       |        |
| Number   | g/cm <sup>3</sup> | Oe    | emu/g  | emu/g | in    | in    | MPa √m          | factor | MPa √             | m    | Dim   | 1     | 2     | 3     | 4     | Ave    |
| 4570     | 14.5006           | 247.5 | 14.63  | 13.92 | 0.745 | 0.498 | 12.50           | -0.361 | invalid           | 7.75 | 0.970 | 92.50 | 92.25 | 92.00 | 91.95 | 92.2   |
| 4567     | 14.5035           | 252.5 | 14.44  | 13.74 | 0.741 | 0.500 | 11.81           | -0.324 | invalid           | 7.81 | 0.978 | 92.20 | 91.80 | 92.25 | 92.25 | 92.1   |
| 4569     | 14.4906           | 252.7 | 14.41  | 13.71 | 0.745 | 0.500 | 12.08           | -0.357 | invalid           | 7.44 | 0.958 | 91.60 | 91.55 | 91.95 | 92.00 | 91.8   |
| 4568     | 14.4853           | 246.2 | 14.70  | 13.99 | 0.743 | 0.499 | 11.60           | -0.281 | invalid           | 8.14 | 0.976 | 91.90 | 92.05 | 91.85 | 92.15 | 92.0   |
| 4566     | 14.5048           | 249.2 | 14.59  | 13.88 | 0.739 | 0.497 | 12.08           | -0.255 | invalid           | 8.53 | 0.947 | 91.55 | 92.15 | 91.80 | 91.95 | 91.9   |
|          |                   |       |        |       |       |       |                 |        |                   |      |       |       |       |       |       | •      |
| Average  | 14.50             | 250   |        |       |       |       | 12.01           |        |                   | 7.93 |       |       |       |       |       | 92.0   |
| Std Dev  | 0.01              | 3     |        |       |       |       | 0.34            |        |                   |      |       |       |       |       |       | 0.2    |
| 95% Cl   | 0.01              | 4     |        |       |       |       | 0.42            |        |                   |      |       |       |       |       |       | 0.2    |
| Max      | 14.50             | 252.7 |        |       |       |       | 12.50           |        |                   |      |       |       |       |       |       | 92.175 |
| Min      | 14.49             | 246.2 |        |       |       |       | 11.60           |        |                   |      |       |       |       |       |       | 91.8   |
| Range    | 0.02              | 6.5   |        |       |       |       | 0.90            |        |                   |      |       |       |       |       |       | 0.4    |
| Count    | 5                 | 5     |        |       |       |       | 5               |        |                   |      |       |       |       |       |       | 5      |

| Grade: V | rade: VH3         |       |        |       |       |       |                 |        |                          |       |       |       |       |       |        |
|----------|-------------------|-------|--------|-------|-------|-------|-----------------|--------|--------------------------|-------|-------|-------|-------|-------|--------|
|          | Density           | Hc    | Sigma* | Def   | Р     | Т     | K <sub>DL</sub> | р      | <b>K</b> <sub>ICER</sub> | Cc    |       |       | Hra   |       |        |
| Number   | g/cm <sup>3</sup> | Oe    | emu/g  | emu/g | in    | in    | MPa √m          | factor | MPa √m                   | Dim   | 1     | 2     | 3     | 4     | Ave    |
| 4751     | 14.1905           | 179.6 | 20.28  | 19.32 | 0.738 | 0.500 | 11.37           | -0.089 | 10.03                    | 0.968 | 89.80 | 89.30 | 89.80 | 89.70 | 89.7   |
| 4748     | 14.1868           | 177.9 | 20.35  | 19.39 | 0.741 | 0.500 | 11.16           | -0.032 | 10.43                    | 0.965 | 89.80 | 89.50 | 89.70 | 89.95 | 89.7   |
| 4752     | 14.1879           | 181.8 | 20.16  | 19.21 | 0.739 | 0.500 | 11.15           | -0.057 | 10.11                    | 0.962 | 90.00 | 90.05 | 90.00 | 89.85 | 90.0   |
| 4749     | 14.2017           | 192.1 | 19.81  | 18.87 | 0.743 | 0.500 | 10.80           | -0.038 | 10.03                    | 0.966 | 90.10 | 90.20 | 90.20 | 90.15 | 90.2   |
| 4760     | 14.1861           | 179.0 | 20.32  | 19.36 | 0.738 | 0.499 | 10.86           | -0.025 | 10.33                    | 0.976 | 89.85 | 89.80 | 89.85 | 89.60 | 89.8   |
|          |                   | •     |        | •     |       |       | •               |        |                          | •     |       |       |       | •     |        |
| Average  | 14 19             | 182   |        |       |       |       | 11.07           |        | 10.19                    |       |       |       |       |       | 89.9   |
| Ct I D   | 0.01              | 102   |        |       |       |       | 0.24            |        | 0.10                     |       |       |       |       |       | 0.0    |
| Std Dev  | 0.01              | 6     |        |       |       |       | 0.24            |        | 0.18                     |       |       |       |       |       | 0.2    |
| 95% Cl   | 0.01              | 7     |        |       |       |       | 0.29            |        | 0.23                     |       |       |       |       |       | 0.3    |
| Max      | 14.20             | 192.1 |        |       |       |       | 11.37           |        | 10.43                    |       |       |       |       |       | 90.163 |
| Min      | 14.19             | 177.9 |        |       |       |       | 10.80           |        | 10.03                    |       |       |       |       |       | 89.7   |
| Range    | 0.02              | 14.2  |        |       |       |       | 0.57            |        | 0.39                     |       |       |       |       |       | 0.5    |
| Count    | 5                 | 5     |        |       |       |       | 5               |        | 5                        |       |       |       |       |       | 5      |

VH3 - Short Rod Results

## Baildonit

|        | NPL         | Total            | Crack Lengt                 | h, µm    | Total                   | Crack Length  | n, μm      |  |
|--------|-------------|------------------|-----------------------------|----------|-------------------------|---------------|------------|--|
| Sample | HV30 Indent | HV30 in          | dents made i                | nto NPL  | HV30 ind                | ents made int | o surface  |  |
| Code   |             | polished surface |                             |          | polished by participant |               |            |  |
|        | Indent 1    | Indent 1         | Indent 2                    | Indent 3 | Indent 1                | Indent 2      | Indent 3   |  |
| B1     | 434         | 494              | 480                         | 473      | 469                     | 441           | 462        |  |
| B2     | 406         | 420              | 424                         | 431      | 399                     | 406           | 396        |  |
| H1     | 483         | 490              | 518                         | 532      | 483                     | 494           | 480        |  |
| H2     | 431         | 413              | 434                         | 424      | 322                     | 340           | 343        |  |
| H3     | 154         | 193              | 172                         | 168      | 182                     | 172           | 186        |  |
| TCM 10 | 606         | 606              | 582                         | 630      | 515                     | 536           | 529        |  |
| K313   | 462         | 427              | 466                         | 431      | 434                     | 413           | 417        |  |
| K420   | 315         | 319              | 329                         | 308      | 308                     | 294           | 301        |  |
|        | NPL HV100   | HV100 ii         | HV100 indents made into NPL |          |                         | lents made in | to surface |  |
|        | indents     | polished surface |                             |          | polished by participant |               |            |  |
| K3560  | -           | -                |                             |          |                         | -             | -          |  |

#### Baildonit Palmqvist Crack Length Measurements

#### **Comments or observations**

We have not computed the sum of crack length for sample K3560 because:

- on a polished surface of sample prepared by NPL we had observed unclear cracks
- on a polished surface of sample prepared by our laboratory we had observed cracks not only at corners of indentation.

#### Details of the in-house polishing routine

- 1. Grinding: from a sintered surface should be ground off at least 0.5 mm but not more than 1.0 mm using a diamond disc.
- 2. Polishing: using beech wood and diamond with a grain size smaller than 0.5 µm.
- 3. Heating: 1.5 hour at 900 °C for avoidance of stresses which can arise during grinding and polishing.
- 4. Performing the Vickers indentations according to ISO 3878.

#### Details of measurement of the crack lengths

*i.e. imaging technique (microscope, electron microscope) magnification, image analyser.* 

Using a microscope: magnification ×200.

# Universitat Politècnica de Catalunya (UPC)

#### Universitat Politècnica de Catalunya, UPC Palmqvist Crack Length Measurements

|        |            | NDI               | UPC      | Tota             | l Crack Leng | gth, μm  | Tota                       | l Crack Leng  | ,th, μm  |  |
|--------|------------|-------------------|----------|------------------|--------------|----------|----------------------------|---------------|----------|--|
| Sampla | HV         | NPL<br>80 Indent  | HV30     | HV30 i           | ndents made  | into NPL | HV30 indents made into UPC |               |          |  |
| Code   | 11 V 3     | o macin           | Indents  | polished surface |              |          | polished surface           |               |          |  |
| Couc   | Hardness   | Crack Length      | Hardness | Indent 1         | Indent 2     | Indent 3 | Indent 1                   | Indent 2      | Indent 3 |  |
|        | Thartaness | μm                | marquess | macint 1         | macm 2       | indent 5 | macht i                    | mucht 2       | indent 5 |  |
| B1     | 1830       | 492               | 1680     | 500              | 496          | 512      | 492                        | 500           | 496      |  |
| B2     | 1610       | 448               | 1550     | 428              | 444          | 408      | 436                        | 420           | 404      |  |
| H1     | 1760       | 568               | 1760     | 556              | 564          | 568      | 548                        | 560           | 564      |  |
| H2     | 1550       | 420               | 1550     | 396              | 392          | 384      | 380                        | 388           | 384      |  |
| H3     | 1280       | 172               | 1330     | 132              | 136          | 144      | 120                        | 128           | 132      |  |
| TCM 10 | 1550       | 648               | 1550     | 736              | 744          | 764      | 760                        | 724           | 740      |  |
| K313   | 1680       | 412               | 1680     | 456              | 436          | 448      | 456                        | 408           | 436      |  |
| K420   | 1430       | 288               | 1430     | 288              | 276          | 264      | 284                        | 296           | 260      |  |
|        |            |                   | UPC      | HV               | 100 indents  | made     | HV1                        | 00 indents ma | ade into |  |
|        | NPL HV     | NPL HV100 indents |          | in               | to NPL polis | shed     | su                         | rface polishe | d by     |  |
|        |            |                   | indents  |                  | surface      |          | participant                |               |          |  |
| K3560  | 900        | 188               | 900      | 192              | 180          | 164      | 156                        | 164           | 176      |  |

#### **Comments or observations**

Ratio between half diagonal (indentation) and mean Palmqvist crack length is below unity for all materials studied, except for grades H3, K420 and K3560. Additionally, in the latter grade there are some corners of the HV100 indent where cracks do not appear.

| Details of the in-house polishing routine |            |                                               |                                |  |  |  |  |  |
|-------------------------------------------|------------|-----------------------------------------------|--------------------------------|--|--|--|--|--|
|                                           | Time (min) | Disc                                          | Medium                         |  |  |  |  |  |
| Step 1 (grinding)                         | 15         | TBW grid-abrade magnetic diamond disc (68 μm) | Water                          |  |  |  |  |  |
| Step 2 (grinding)                         | 15         | TBW grid-abrade magnetic diamond disc (30 μm) | Water                          |  |  |  |  |  |
| Step 3 (polishing)                        | 20         | Wood disc                                     | 30 µm diamond paste<br>+ water |  |  |  |  |  |
| Step 4 (polishing                         | 20         | Wood disc                                     | 6 μm diamond paste<br>+ water  |  |  |  |  |  |
| Step 5 (polishing)                        | 20         | Wood disc                                     | 3 μm diamond paste<br>+ water  |  |  |  |  |  |
|                                           |            |                                               |                                |  |  |  |  |  |

#### **Details of measurement of the crack lengths**

*i.e. imaging technique (microscope, electron microscope) magnification, image analyser.* 

Conventional optical microscopy at  $10 \times$  and  $40 \times$  magnifications

| Sample | K <sub>Ic</sub><br>(MN m <sup>-1.5</sup> ) | HV30<br>NPL value | Sample | K <sub>Ic</sub><br>(MN m <sup>-1.5</sup> ) | HV30<br>NPL value |
|--------|--------------------------------------------|-------------------|--------|--------------------------------------------|-------------------|
| B1     | $9.22\pm0.13$                              | 1778              | Н3     | $12.03\pm0.14$                             | 1364              |
| B2     | 9.99 ± 0.13                                | 1626              | K313   | $9.27\pm0.09$                              | 1726              |
| H1     | 8.90 ± 0.18                                | 1810              | K420   | $11.67\pm0.07$                             | 1486              |
| H2     | $9.96\pm0.20$                              | 1592              | K3560  | $18.93 \pm 0.11$                           | 996               |

### Universitat Politècnica de Catalunya, UPC SEPB Measurements

National Physical Laboratory

#### National Physical Laboratory Palmqvist Crack Length Measurements

| Sample | NPL           |                   | Total Crack Length, µm    |              |  |  |  |
|--------|---------------|-------------------|---------------------------|--------------|--|--|--|
| Code   | HV30 Indent   | HV30 inc          | dents made into NPL polis | hed surface  |  |  |  |
| Couc   | 11 v 50 macin | Indent 1          | Indent 2                  | Indent 3     |  |  |  |
| B1     |               |                   |                           |              |  |  |  |
| B2     |               | See Table B1      | See Table B1              | See Table B1 |  |  |  |
| H1     |               |                   |                           |              |  |  |  |
| H2     |               |                   |                           |              |  |  |  |
| H3     |               |                   |                           |              |  |  |  |
| TCM 10 |               |                   |                           |              |  |  |  |
| K313   |               |                   |                           |              |  |  |  |
| K420   |               |                   |                           |              |  |  |  |
|        | NPL           |                   | HV100 indents made        |              |  |  |  |
|        | HV100         | into NPL polished |                           |              |  |  |  |
|        | indents       | surface           |                           |              |  |  |  |
| K3560  |               | See Table B1      | See Table B1              | See Table B1 |  |  |  |

#### **Comments or observations**

All samples annealed at 800 °C for 1h in vacuum. Slow cooling (18h) to room temperature.

#### Details of the in-house polishing routine

Samples mounted in phenolic resin and prepared on Abramatic polishing machine.

Grinding using 220  $\mu$ m fixed diamond abrasive to remove 200  $\mu$ m of surface. Grinding for 1 minute, 65  $\mu$ m fixed diamond abrasive. Grinding for 1 minute, 20  $\mu$ m fixed diamond abrasive. Lapping for 10 minutes using 6  $\mu$ m diamond on Petrodisc-M wheel. Polishing for 5 minutes using 6  $\mu$ m diamond abrasive, DP-Pan cloth. Then 3  $\mu$ m diamond abrasive, DP-Pan cloth. Finally, 1  $\mu$ m diamond abrasive, DP-Pan cloth. Samples annealed as above.

#### **Details of measurement of the crack lengths**

Indent diagonals and crack length measured using KS400 image analysis system. Images obtained using ProgRes camera with a resolution of 1000 by 700 pixels. Leica DMXRE microscope used at magnification of  $\times$ 500 or  $\times$ 1000 where appropriate.

## BAM

|        | NPL <sup>+</sup> | Tota     | Crack Leng        | th, μm   | Total                         | Crack Length    | ı, μm     |  |
|--------|------------------|----------|-------------------|----------|-------------------------------|-----------------|-----------|--|
| Sample | HV30             | HV30 ii  | ndents made       | into NPL | HV30 indent made into surface |                 |           |  |
| Coue   | Indent           | p        | onshed surfa      | ice      | polis                         | sned by partici | pant      |  |
|        |                  | Indent 1 | Indent 2          | Indent 3 | Indent 1                      | Indent 2        | Indent 3  |  |
| B1     | 508              | 502      | 506               | 505      | 488                           | 486             | 486       |  |
| B2     | 440              | 452      | 442               | 422      | 406                           | 422             | 426       |  |
| H1     | 547              | 543      | 531               | 534      | 420                           | 526             | 514       |  |
| H2     | 468              | 434      | 429               | 408      | 369                           | 405             | 417       |  |
| H3     | 164              | 168      | 170               | 162      | 150                           | 160             | 150       |  |
| TCM 10 | 634              | 592      | 622               | 633      | 570                           | 626             | 641       |  |
| K313   | 460              | 433      | 426               | 455      | 448                           | 453             | 443       |  |
| K420   | 349              | 307      | 308               | 320      | 273                           | 237             | 287       |  |
|        | NPL              | HV       | 100 indents 1     | nade     | HV100 in                      | dent crack len  | gths made |  |
|        | HV100            | in       | into NPL polished |          |                               | surface polish  | ed        |  |
|        | indent           |          | surface           |          | by participant                |                 |           |  |
| K3560  | 291              |          |                   |          |                               |                 |           |  |

BAM Palmqvist Crack Length Measurements

#### **Comments or observations**

- <sup>+</sup> Only samples TCM10 and K3560 fulfilled requirements for plane parallelism. All other results of NPL HV30 indents were considered as invalid.
- Before placing 3 HV30 indents into the polished face the opposite side of the polished surface were finished by grinding to receive coplanar faces.

#### Details of the in-house polishing routine

The specimens were prepared in the usual way for ceramics, with PM5 Auto Lap Precision Lapping and Polishing Machine with PP5 GT Polishing Jig from Logitech.

The final stage of polishing using SF-1 suspension has proven especially suitable and allows the production of a polished surface about completely free of defects (cracks and chip-out).

| Stop | Surface     | Force | Speed | Abrasive                             | Time |  |  |  |  |
|------|-------------|-------|-------|--------------------------------------|------|--|--|--|--|
| Step | Suitace     | (gf)  | (rpm) | grain size                           | (h)  |  |  |  |  |
| 1    | Cast-Iron   | 4426  | 23    | Al <sub>2</sub> O <sub>3</sub> 20 μm | 8    |  |  |  |  |
| 2    | Cast-Iron   | 4426  | 23    | $Al_2O_3$ 9 $\mu m$                  | 3    |  |  |  |  |
| 3    | Cast-Iron   | 4426  | 23    | $Al_2O_3$ 3 $\mu m$                  | 2    |  |  |  |  |
| 4    | MD SUBA X   | 1500  | 49    | SF1                                  | 3    |  |  |  |  |
|      |             |       |       | $(SiO_2 \ 0.04 \ \mu m)$             |      |  |  |  |  |
| 5    | Polyurethan | 2370  | 49    | SF1                                  | 3    |  |  |  |  |
|      | -           |       |       | (SiO <sub>2</sub> 0.04 µm)           |      |  |  |  |  |
| 6    | MD SUBA X   | 2370  | 49    | SF1                                  | 12   |  |  |  |  |
|      |             |       |       | (SiO <sub>2</sub> 0.04 µm)           |      |  |  |  |  |

**Grinding and Polishing** 

#### **Details of measurement of the crack lengths**

*i.e. imaging technique (microscope, electron microscope) magnification, image analyser.* 

Crack lengths were measured optically at a magnification of ×500 using microscope Axiotech 25HD.

#### BAM Individual Palmqvist Measurements

| Sample No         |            | HV30 | Total crack length | W <sub>G</sub><br>Nm m <sup>-1</sup> | $W_K$ MN m <sup>-3/2</sup> |
|-------------------|------------|------|--------------------|--------------------------------------|----------------------------|
|                   |            |      | mm                 |                                      |                            |
|                   | Ind 1      | 1775 | 0.502              | 586                                  | 8.95                       |
| D1                | Ind 2      | 1785 | 0.506              | 582                                  | 8.94                       |
| DI<br>4227        | Ind 3      | 1745 | 0.505              | 583                                  | 8.84                       |
| 4337              | Mean value |      |                    | 584                                  | 8.91                       |
|                   | St. Dev    |      |                    | 2                                    | 0.05                       |
|                   | Ind 1      | 1600 | 0.452              | 651                                  | 8.95                       |
| D2                | Ind 2      | 1590 | 0.442              | 666                                  | 9.02                       |
| <b>B2</b>         | Ind 3      | 1610 | 0.422              | 697                                  | 9.29                       |
| 4391              | Mean value |      |                    | 671                                  | 9.09                       |
|                   | St. Dev.   |      |                    | 19                                   | 0.15                       |
|                   | Ind 1      | 1795 | 0.543              | 542                                  | 8.65                       |
| 114               | Ind 2      | 1795 | 0.531              | 554                                  | 8.75                       |
| HI<br>4420        | Ind 3      | 1815 | 0.534              | 551                                  | 8.77                       |
| 4438              | Mean value |      |                    | 549                                  | 8.72                       |
|                   | St. Dev.   |      |                    | 5                                    | 0.05                       |
| _                 | Ind 1      | 1590 | 0.434              | 678                                  | 9.11                       |
|                   | Ind 2      | 1585 | 0.429              | 686                                  | 9.14                       |
| H2                | Ind 3      | 1600 | 0.408              | 721                                  | 9.42                       |
| <b>H2</b><br>4667 | Mean value |      |                    | 695                                  | 9.22                       |
|                   | St. Dev.   |      |                    | 19                                   | 0.14                       |
|                   | Ind 1      | 1365 | 0.168              | 1752                                 | 13.56                      |
| 112               | Ind 2      | 1350 | 0.170              | 1731                                 | 13.41                      |
| H3                | Ind 3      | 1320 | 0.162              | 1817                                 | 13.58                      |
| 4695              | Mean value |      |                    | 1766                                 | 13.52                      |
|                   | St. Dev.   |      |                    | 36                                   | 0.08                       |
|                   | Ind 1      | 1615 | 0.592              | 497                                  | 7.86                       |
| TCM10             | Ind 2      | 1610 | 0.622              | 473                                  | 7.65                       |
| ICM10<br>5011     | Ind 3      | 1615 | 0.633              | 465                                  | 7.60                       |
| 5011              | Mean value |      |                    | 478                                  | 7.70                       |
|                   | St. Dev.   |      |                    | 14                                   | 0.11                       |
|                   | Ind 1      | 1680 | 0.433              | 680                                  | 9.37                       |
| 1/212             | Ind 2      | 1680 | 0.426              | 691                                  | 9.45                       |
| <b>K313</b>       | Ind 3      | 1690 | 0.455              | 647                                  | 9.17                       |
| 5458              | Mean value |      |                    | 672                                  | 9.33                       |
|                   | St. Dev.   |      |                    | 19                                   | 0.12                       |
|                   | Ind 1      | 1500 | 0.307              | 959                                  | 10.52                      |
| 17.400            | Ind 2      | 1480 | 0.308              | 956                                  | 10.43                      |
| K420              | Ind 3      | 1470 | 0.320              | 920                                  | 10.20                      |
| 55/9              | Mean value |      |                    | 945                                  | 10.38                      |
|                   | St. Dev.   |      |                    | 18                                   | 0.13                       |

### Surface polished by NPL (following grinding on opposite side to achieve adequate flatness)

#### BAM Individual Palmqvist Measurements

### Surface polished by BAM

| Surface poins       |            |      |                             |                                      |                                        |
|---------------------|------------|------|-----------------------------|--------------------------------------|----------------------------------------|
| Sample No           |            | HV30 | Total crack<br>length<br>mm | W <sub>G</sub><br>Nm m <sup>-1</sup> | W <sub>K</sub><br>MN m <sup>-3/2</sup> |
|                     | Ind 1      | 1755 | 0.488                       | 603                                  | 9.02                                   |
| <b>B1</b><br>4337   | Ind 2      | 1805 | 0.486                       | 606                                  | 9.17                                   |
|                     | Ind 3      | 1795 | 0.486                       | 606                                  | 9.14                                   |
|                     | Mean value |      |                             | 605                                  | 9.11                                   |
|                     | St. Dev    |      |                             | 1                                    | 0.06                                   |
| <b>B2</b><br>4391   | Ind 1      | 1615 | 0.406                       | 725                                  | 9.49                                   |
|                     | Ind 2      | 1610 | 0.422                       | 697                                  | 9.29                                   |
|                     | Ind 3      | 1615 | 0.426                       | 691                                  | 9.26                                   |
|                     | Mean value |      |                             | 704                                  | 9.35                                   |
|                     | St. Dev.   |      |                             | 15                                   | 0.10                                   |
|                     | Ind 1      | 1830 | 0.420                       | 701                                  | 9.93                                   |
| 111                 | Ind 2      | 1805 | 0.526                       | 560                                  | 8.81                                   |
| HI<br>1429          | Ind 3      | 1795 | 0.514                       | 573                                  | 8.89                                   |
| 4430                | Mean value |      |                             | 611                                  | 9.21                                   |
|                     | St. Dev.   |      |                             | 64                                   | 0.51                                   |
|                     | Ind 1      | 1625 | 0.369                       | 798                                  | 9.98                                   |
| 112                 | Ind 2      | 1615 | 0.405                       | 727                                  | 9.50                                   |
| H2<br>4667          | Ind 3      | 1610 | 0.417                       | 706                                  | 9.35                                   |
|                     | Mean value |      |                             | 743                                  | 9.61                                   |
|                     | St. Dev.   |      |                             | 39                                   | 0.27                                   |
|                     | Ind 1      | 1335 | 0.150                       | 1962                                 | 14.19                                  |
| Ш3                  | Ind 2      | 1325 | 0.160                       | 1839                                 | 13.69                                  |
| <b>H3</b><br>4695   | Ind 3      | 1335 | 0.150                       | 1962                                 | 14.19                                  |
|                     | Mean value |      |                             | 1921                                 | 14.03                                  |
|                     | St. Dev.   |      |                             | 58                                   | 0.24                                   |
|                     | Ind 1      | 1615 | 0.570                       | 516                                  | 8.01                                   |
| TCM10               | Ind 2      | 1645 | 0.626                       | 470                                  | 7.71                                   |
| 5011                | Ind 3      | 1645 | 0.641                       | 459                                  | 7.62                                   |
|                     | Mean value |      |                             | 482                                  | 7.78                                   |
|                     | St. Dev.   |      |                             | 25                                   | 0.17                                   |
| <b>K313</b><br>5458 | Ind 1      | 1725 | 0.448                       | 657                                  | 9.34                                   |
|                     | Ind 2      | 1755 | 0.453                       | 650                                  | 9.36                                   |
|                     | Ind 3      | 1715 | 0.443                       | 664                                  | 9.36                                   |
|                     | Mean value |      |                             | 657                                  | 9.35                                   |
|                     | St. Dev.   |      |                             | 6                                    | 0.01                                   |
| <b>K420</b><br>5579 | Ind 1      | 1500 | 0.273                       | 1078                                 | 11.15                                  |
|                     | Ind 2      | 1495 | 0.237                       | 1242                                 | 11.95                                  |
|                     | Ind 3      | 1485 | 0.287                       | 1025                                 | 10.82                                  |
|                     | Mean value |      |                             | 1115                                 | 11.31                                  |
|                     | St. Dev.   |      |                             | 92                                   | 0.47                                   |

| Additional | Commits ID | Thickness | Width | Notch radius             | F <sub>max</sub> | Notch depth | K <sub>Ic</sub> |
|------------|------------|-----------|-------|--------------------------|------------------|-------------|-----------------|
| Code       | Sample ID  | mm        | mm    | μm                       | N                | mm          | MPa $m^{1/2}$   |
|            | 4364       | 2.88      | 5.75  | 23.6                     | 705              | 1.412       | 15.98           |
|            | 4365       | 2.88      | 5.75  | 21.8                     | 749              | 1.398       | 16.86           |
| <b>D1</b>  | 4366       | 2.88      | 5.75  | 17.7                     | 681              | 1.381       | 15.21           |
| B1         | 4367       | 2.89      | 5.76  | 13.1                     | 568              | 1.384       | 12.63           |
|            | 4368       | 2.89      | 5.76  | 9.8                      | 542              | 1.400       | 12.13*          |
|            | 4369       | 2.89      | 5.75  | 6.5                      | 534              | 1.386       | 11.91*          |
| B2         | 4422       | 2.87      | 5.75  | 17.5                     | 533              | 1.440       | 12.27           |
|            | 4423       | 2.88      | 5.75  | 14.3                     | 538              | 1.452       | 12.40           |
|            | 4424       | 2.88      | 5.75  | 12.8                     | 459              | 1.483       | 10.75           |
|            | 4425       | 2.88      | 5.75  | 9.1                      | 488              | 1.448       | 11.25*          |
|            | 4426       | 2.88      | 5 75  | 11.3                     | 504              | 1 446       | 11.61           |
|            | 4467       | 2.90      | 5 76  | 10.4                     | 488              | 1 417       | 10.96           |
|            | 4470       | 2.90      | 5 75  | 49                       | 506              | 1 467       | 11.68*          |
|            | 4473       | 2.91      | 5 75  | 61                       | 510              | 1 431       | 11.54*          |
| H1         | 4476       | 2.92      | 5 75  | 6.5                      | 491              | 1 417       | 11.01*          |
|            | 4479       | 2.91      | 5 74  | 6.4                      | 517              | 1 429       | 11 73*          |
|            | 4480       | 2.91      | 5.75  | 8.5                      | 588              | 1.430       | 13.29*          |
| H2         | 4625       | 2.90      | 5 77  | 14.1                     | 642              | 1 439       | 14 51           |
|            | 4626       | 2.90      | 5.76  | 7.5                      | 600              | 1 442       | 13 63*          |
|            | 4627       | 2.90      | 5 76  | 8.5                      | 598              | 1 439       | 13 57*          |
|            | 4628       | 2.90      | 5 76  | 6.0                      | 460              | 1 444       | 10 44*          |
|            | 4629       | 2.91      | 5 75  | 6.0                      | 462              | 1 448       | 10.53*          |
|            | 4630       | 2.91      | 5 76  | 8.9                      | 585              | 1 464       | 13 38           |
| НЗ         | 4725       | 2.91      | 5 75  | 49                       | 574              | 1 357       | 12.56*          |
|            | 4726       | 2.91      | 5.76  | 6.6                      | 615              | 1 399       | 13.66*          |
|            | 4727       | 2.91      | 5 77  | 7.5                      | 664              | 1 396       | 14 67*          |
|            | 4728       | 2.91      | 5.76  | 6.6                      | 694              | 1 388       | 15 35*          |
|            | 4729       | 2.91      | 5.76  | 8.1                      | 681              | 1 386       | 15.09*          |
|            | 4730       | 2.90      | 5.76  | 8.4                      | 683              | 1.367       | 15.00*          |
|            | 5401       | 3.02      | 6.01  | 12.9                     | 561              | 1.507       | 12.00           |
| K313       | 5402       | 3.02      | 5 99  | 10.8                     | 527              | 1.648       | 11.56           |
|            | 5403       | 3.02      | 5.99  | 8.9                      | 482              | 1.640       | 10.45*          |
|            | 5403       | 3.02      | 6.00  | 5.6                      | 402              | 1.621       | 10.45           |
|            | 5405       | 3.02      | 5 99  |                          | 481              | 1.645       | 10.49*          |
|            | 5406       | 3.02      | 5.99  | 20.7                     | 557              | 1.637       | 12 21           |
| K420       | 5530       | 3.02      | 5.99  | 6.1                      | 522              | 1.047       | 10.48*          |
|            | 5531       | 3.02      | 6.00  | 0.1<br>4 7               | 508              | 1 509       | 10.46*          |
|            | 5532       | 3.02      | 5 99  | 3.4                      | 500              | 1.505       | 10.46*          |
|            | 5533       | 3.02      | 5.99  | 3.8                      | 502              | 1.525       | 10.52*          |
|            | 5534       | 3.02      | 5.99  | 3.0                      | 511              | 1.519       | 10.52           |
|            | 5535       | 3.02      | 6.00  | <i>J.2</i><br><i>4</i> 0 | 514              | 1.521       | 10.01           |
| K3560      | 5686       | 3.02      | 6.00  | 4.0                      | 916              | 1.309       | 16.37           |
|            | 5687       | 3.01      | 6.00  | 10.1                     | 810<br>812       | 1.440       | 16.37           |
|            | 5600       | 3.02      | 6.00  | 12.2                     | 013<br>010       | 1.430       | 16.30           |
|            | 5600       | 3.01      | 5.01  | 11.0<br>6 7              | 019<br>Q10       | 1.430       | 10.47           |
|            | 5600       | 3.02      | 5.99  | 7.0                      | 019<br>826       | 1.442       | 10.44           |
| 1          | シログワ       |           | 0.00  | /.0                      | 020              | 1.4.21      | 10.00           |

BAM Results of Fracture Toughness – SEVNB Test

\* Considered valid by BAM: i.e. notch radius is small enough.